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ABSTRACT
Al To ensure industrial competitiveness, especially 
within the steel sector, it is imperative to optimize 
expenditures and enhance productivity. Against 
this backdrop, preventing incidents associated with 
automation and equipment maintenance emerges as 
a key element to maintain uninterrupted production. 
Furthermore, minimizing material loss is paramount. 
Within this framework, a unique opportunity is identified 
to improve the control of a skin-pass mill, ensuring 
that the mechanical tension exerted on the steel sheet 
complies with established specifications. To establish 
effective control, it is vital that the controller transmits an 
appropriate signal to the plant. For the validation of control 
signals, a suitable model of the mill plant is essential. 
This paper investigates various hyperparameters in 
MLP-type artificial neural networks using the Levenberg-
Marquardt backpropagation algorithm for modeling 
this plant. These findings are subsequently juxtaposed 
with a technique widely recognized in the literature, the 
N4SID. The data suggests that the neural network-based 
model showcases an improvement of 14% compared 
to the outcomes derived from N4SID and, moreover, 
provides the capability for continuous training for better 
alignment with the real phenomenon.
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RESUMO
Para garantir a competitividade industrial, especialmente 
no setor siderúrgico, é imperativo otimizar despesas e 
aumentar a produtividade. Contra esse pano de fundo, 
prevenir incidentes associados à automação e manu-
tenção de equipamentos surge como um elemento-
-chave para manter a produção ininterrupta. Além disso, 
minimizar a perda de material é de suma importância. 
Neste contexto, identifica-se uma oportunidade única 
de melhorar o controle de um laminador de encruamen-
to, garantindo que a tensão mecânica exercida sobre a 
chapa de aço esteja em conformidade com as especifi-
cações estabelecidas. O principal objetivo deste artigo 
é verificar a viabilidade das redes neurais para modelar 
o stress mecânico em um laminador de encruamento. 
Para estabelecer um controle eficaz, é vital que o contro-
lador transmita um sinal adequado para a planta. Para a 
validação dos sinais de controle, é essencial um mode-
lo adequado da planta do laminador. Este artigo inves-
tiga vários hiperparâmetros em redes neurais artificiais 
do tipo MLP, utilizando o algoritmo de retropropagação 
Levenberg-Marquardt para modelar esta planta. Essas 
descobertas são posteriormente comparadas com uma 
técnica amplamente reconhecida na literatura, o N4SID. 
Os dados sugerem que o modelo baseado em rede neu-
ral mostra uma melhoria de 14% em comparação com os 
resultados obtidos a partir do N4SID e, além disso, ofe-
rece a capacidade de treinamento contínuo para melhor 
alinhamento com o fenômeno real..
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1 INTRODUCTION

The rolling process requires a properly adjusted controller so that the skin-pass mill can finish the 
steel sheet. If the controller is not well adjusted, the quality of the steel sheet can be affected (SEO et 
al., 2020).

Shen et al. (2022) assert that physical models overlook the history of mills after successive material 
passes, specifically their natural degradation. In order to achieve proper controller performance, it is crucial 
for the system plant to accurately represent the real-world conditions. While modeling techniques can 
provide assistance, capturing the complexities of a complex system can present significant challenges. 
Alves et al. (2012) highlight key difficulties, including the incorporation of interactions between multiple 
process variables, nonlinearities, and time delays within the model. Moreover, the system behavior is 
heavily influenced by operating conditions and the mill’s speed.

As time goes by, the controller ends up operating on a plant that is different from its initial state 
in terms of parameters, which can result in a loss of quality in the steel sheet. So, in order to overcome 
the complexity of modeling and obtain an accurate model of the mill, data-driven modeling, also known 
as identification or empirical modeling, can be a useful solution. This approach helps ensure the quality 
of the steel sheet, preventing material waste and financial losses. To achieve this, operational system 
data is required for the identification process (AGUIRRE, 2015; SHI et al., 2022b; SHEN et al., 2022).

Previously, Rodrigues et al. (2013) proposed the use of the N4SID (Numerical Algorithm for 
Subspace State Space System IDentification) identification method for the skin-pass mill. However, the 
data sampling considered is not sufficient to adequately map the aging process of the mill.

One way to perform this identification is by using artificial intelligence, particularly Artificial Neural 
Networks (ANNs), due to their ability to map the model that relates inputs and outputs. The application of 
such concepts, also present in this project, contributes to avoiding unnecessary losses in the processes 
(COLLA, 2022; SHI et al., 2022).

Escribano et al. (2012) applied various Artificial Intelligence Algorithms, such as artificial neural 
networks and regression trees, to model the behavior of the cold rolling mill, and they obtained satisfac-
tory results.

According to Shen et al. (2022), ANN-based models can demonstrate an improvement of up to 
50% in predicting the rolling force to be applied to the material, when compared to the physical model. 
This improvement was observed because the model identified by the ANN considered the steel chemistry, 
physical rolling parameters, and rolling histories for all rolling stands in an industrial hot strip mill (SHEN 
et al., 2022).

Even though hyperparameter adjustments were made empirically in the studies by Pican et al. 
(1996), Wiklund and Sandberg (2002), He and Liu (2005), and Ren et al. (2021), the authors did not 
clearly present the results of the different topologies, namely, the intermediate architectures in terms of 
numbers of layers and neurons per layer.

This paper, considering the advantages of artificial neural networks, presents the influence of the 
number of neurons in performing the identification of a skin-pass mill using MLP networks. The model 
predicts the mechanical stress applied to the steel sheet.
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In this context, the main objective of this paper is to present an exploratory analysis of modeling 
using artificial neural networks with data from a rolling mill. The neural network architecture will be empi-
rically adjusted, focusing on hyperparameters such as the number of layers and the number of neurons 
in each layer, to demonstrate the feasibility of using ANNs to model this type of system.

2 BACKGROUND ON FEEDFORWARD NEURAL NETWORK

Artificial Neural Networks (ANN) are mathematically expressed by Equations 1 and 2 (BISHOP, 
2006; HAYKIN, 2009):

where a is the output of the neuron,  is an activation function, w is the weight, x is the input vector of 
the input layer, and b is the bias. m is the number of inputs, the superscript [l] denotes the lth layer, 
the superscript (i) denotes the ith training example, the subscript j denotes the input unit, and the subscript k 
denotes the neuron unit.

Artificial neurons are processing units characterized by inputs, outputs, weights, biases, and a 
non-linear transfer function, as shown in Figure 1. During ANN training, the weights and biases are up-
dated to minimize the error between the target value and the ANN output (BISHOP, 2006; HAYKIN, 2009; 
MAIER et al., 2023).

Figure 1 - Neural network architecture with emphasis on the artificial neuron.

Source: Adapted from Haykin (2009) and Rodrigues et al. (2021).

Artificial Neural Networks (ANN) can be structured in various architectures, incorporating activa-
tion functions, and learning algorithms. The architecture of an ANN consists of distinct layers - input, 
hidden, and output - each with a specific size. The size of the input layer is determined by the number 
of inputs, while the number of hidden layers and neurons within them may vary based on the specific 
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application. Lastly, the number of neurons in the output layer is determined by the desired number of 
outputs. (HAYKIN, 2009; RODRIGUES et al., 2021).

A Multi-layer Perceptron (MLP) is a type of ANN that is widely used to solve various problems in 
different fields (ROSENBLATT, 1958; WERBOS, 1974). The backpropagation algorithm has played a crucial 
role in enhancing the flexibility of MLPs. With backpropagation learning, the network can effectively learn 
and encode the mapping between inputs and outputs (RUMELHART; MCCLELLAND, 1987; HAYKIN, 2009).

In the learning process, the network receives an input and passes it through each neuron until it 
reaches the output layer, producing an output value. The first hidden layer adjusts the input to have values 
between -1 and 1, which helps ensure all inputs are on the same scale. This adjustment, called mean 
normalization, allows the network to work effectively with the data, as shown in Equation 3 (RUMELHART; 
MCCLELLAND, 1987; HAYKIN, 2009).

(3)

where N is the number of samples available, and x is the ith input sample. The computation of z[l](i) in the 
first hidden layer is given by Equation 4.

(4)

where the symbols represented by uppercase letters are matrices. The output of this first layer is calcu-
lated with an activation function as in Equation 5.

(5)

In the subsequent steps of ANN computations, the output from the previous layer becomes the input 
for the current layer. This allows for the flow of information from one layer to the next in a sequential 
manner, given by Equation 6.

(6)

In the output layer, the estimated output  is obtained as in Equation 7:

(7)
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When dealing with a linear function, the output from the neural network is compared to the desired target 
value, resulting in an error signal (), as shown in Figure 2. This error signal is then propagated backwards 
through the network, layer by layer, to adjust the weights and biases. This process continues iteratively 
until certain stopping criteria are met. These stopping criteria can be defined by the number of epochs 
(iterations), a specific performance index, or a combination of both. The learning process halts when 
these criteria are satisfied, indicating that the network has reached an acceptable level of accuracy or 
performance (HAYKIN, 2009).

Figure 2 - Diagram of artificial neural network identification.

Source: Adapted from Haykin (2009) and Rodrigues et al. (2021).

In this study, the training algorithm employed was the Levenberg-Marquardt (LM) method. The LM 
method combines elements from the methods developed by Levenberg (1944) and Marquardt (1963) 
aiming to strike a balance between them. The evaluation of the Artificial Neural Network’s performance 
is done using the mean-squared error (MSE) metric, shown in Equation 8, which quantifies the average 
difference between the predicted and actual outputs (HAYKIN, 2009).

(8)

where N is the number of samples, yi is the measured sample and  is the estimated value.

During the ANN learning process, the data set is divided into the following sets (HAYKIN, 2009; 
RODRIGUES et al., 2021): i) training set: the training set used to compute errors and to determine the weights 
and biases update at each iteration during the learning/training process; ii) validation set: the validation 
set used to minimize over-fitting; iii) testing set: the test set used to estimate the generalization error.

3 SKIN-PASS MILL

The data presented in this study are obtained from a skin-pass mill from Sumitomo. The “mill region”, 
illustrated in Figure 3 refers to the area where the identification will be performed. In this region, the following 
equipment can be found (RODRIGUES et al., 2013):

• Tensiometers: composed of three cylinders attached to a load cell. This assembly measures the 
force that will be used in the calculation of mechanical stress.

• Backup rolls: are rollers that are in direct contact with the material to be rolled.
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• Central tensioner: it is a set composed of three tensioning rollers, driven by a single motor. The central 
tensioner is responsible for ensuring the mechanical stress at the output of the rolling mill.

• 
Figure 3 - Skin-pass mill diagram.

Source: Adapted from Rodrigues et al. (2013).

Through hydraulic actuation the lower backup roll cylinder moves approaching the upper backup 
roll cylinder. The force  applied to the steel strip causes the elongation of the sheet. In order to achieve 
the desired elongation, it is necessary for the steel strip to be tensioned at the entry and exit of the rolling 
mill, ensuring that the sheet remains fully stretched (RODRIGUES et al., 2013).

The variables that will be used in the identification are presented in Table 1, which also shows the 
equipment to which these variables are related, the measurement method, the unit of measurement, and 
their classification in the control system (input or output).

The thickness and width of the steel sheet determine the mechanical stress reference that the system 
needs to develop in order to process the material without experiencing any defects, loosening, or sheet breaka-
ge. It is crucial for the system to generate an appropriate level of mechanical stress to ensure that the material 
is processed effectively and without any detrimental issues (RODRIGUES et al., 2013).

The input mechanical stress information is sent to the motor control of the lower backup roll cylinder, 
and from there the motor controls the mechanical stress at the entry by adjusting its speed. Similarly, the 
output mechanical stress information is sent to the control of the central tensioner motor, which then 
controls the stress at the exit of the rolling mill (RODRIGUES et al., 2013).

Table 1 - Variables to be used in the identification.

Variable Equipment Sensor Unit Classification

Mechanical 
stress at the 

input
Tensiometer Load Cell k g f /mm2 Output

Backup roll 
cylinder 
speed

Lower 
backup roll 

cylinder
Encoder mpm Input

Mechanical 
stress at the 

output
Tensiometer Load Cell k g f /mm2 Output

Tensioner 
speed

Central 
tensioner Encoder mpm Input

Source: Rodrigues et al. (2013).
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4 METHODOLOGY

Given the inherent variability in network outcomes based on architecture, experiments delineated 
in Table 2 were conducted. For this study, the activation function for the hidden layers was chosen as the 
hyperbolic tangent sigmoid, while the output layer employed a linear activation function. The primary goal 
was to iteratively adjust the parameters, evaluating the influence of each on the identification process.

Table 2 - Configurations of the ANN architectures.

Case Layer Neurons per layer Total number of neurons

1 1 2 2

2 1 4 4

3 1 8 8

4 1 10 10

5 2 [2 2] 4

6 2 [4 4] 8

7 2 [8 8] 16

8 2 [10 10] 20

9 3 [2 2 2] 6

10 3 [4 4 4] 12

11 3 [8 8 8] 24

12 3 [10 10 10] 30
                      Source: The authors (2023).

In Table 2, different configurations of neural networks are laid out specifically highlighting the 
combinations of hidden layers and their respective neuron counts. For clarity, in case 4, there’s a single 
hidden layer with 10 neurons. Meanwhile, case 12 showcases a design with three hidden layers, each 
containing 10 neurons. The last column in the table provides the total number of neurons present in the 
neural network’s architecture.

It is noteworthy that the dataset encompasses around 8000 samples. The data has been sourced 
from an authentic apparatus, although it remains inaccessible for public usage. This dataset was divided as 
follows: 70% for training, 15% for validation, and 15% for testing.

The toolbox used in this study is the feedforwardnet, part of Matlab. The tool allowed for the swift simulation 
of various architectures, facilitating data control and management.

By combining the number of hidden layers and the number of neurons, the estimated values are obtained 
and compared with the actual values. The quality of the identification is given by the MRSE (Mean Relative Squared 
Error), given by Equation 9.

(9)

where no is the total number of outputs, and N is the amount of data used to measure the ANN’s perfor-
mance. The result of MRSE indicates that the closer it is to zero the better the identified model is, which 
means that the model fits the data well.
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5 RESULTS AND DISCUSSIONS

In our intensive exploration into the nuanced applications of Artificial Neural Networks (ANNs) 
in modeling the processes of a skin-pass mill, we unearthed some notable findings. Most significantly, 
the optimal neural configuration emerged from our experiment 12, which comprised three hidden layers 
with 10 neurons each. This model recorded an MRSE of a mere 0.7288%. In stark contrast, the simplest 
model we examined with a single hidden layer and just two neurons registered an MRSE of 0.9577%. The 
Figure 6 displays all the results obtained from the experiments. The MRSE is highlighted by the color bar.

It becomes clear that as the number of neurons increases, the results improve. However, the op-
timal definition of the number of neurons, or even the number of layers, is not well-documented in the 
literature, as pointed out by Svozil et al. (1997), Zhang et al. (1998), and Maier et al. (2023). Although the 
empirical parameter adjustment process revealed a satisfactory result, the hyperparameter calibration 
can be driven by a heuristic optimization process, as indicated by Maier et al. (2023), potentially utilizing 
techniques such as genetic algorithms.

Figure 6 - Heat map showing the influence of the number of layers and neurons on MRSE (%).

Source: The authors (2023).

Drawing a comparative analysis, prior methodologies, notably the N4SID technique from existing 
literature (Rodrigues et al., 2013) yielded an MRSE of 0.84%. In this light, our results using neural networks 
not only surpassed this benchmark but also accentuated the potential advantages of ANNs over more 
traditional modeling techniques, especially for skin-pass mill operations.

Achieving a 14% improvement in the accuracy of a neural model for a temper mill holds significant 
implications for the steel manufacturing industry. Firstly, the financial aspect cannot be understated. 
Precise control in the temper mill process directly translates to cost efficiency. Even seemingly minor 
inaccuracies can have substantial economic ramifications, leading to material wastage and increased 
operational costs. Beyond the economic dimension, the quality of the final steel product is paramount. The 
temper mill process critically influences attributes such as surface finish, flatness, and tensile properties. 
By improving the accuracy of the modeling process, industries can ensure consistent quality, which is 
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especially vital in sectors with stringent standards like automotive or construction. Furthermore, opera-
tional efficiency sees a boost with accurate modeling. Predicting outcomes with higher precision means 
fewer real-time operational errors, which in turn results in decreased downtime and recalibrations. This 
streamlining of the production process can lead to significant time savings and improved throughput. 
Finally, the safety implications of accurate modeling in such a high-stakes environment as steel production 
are profound. Reducing the potential for equipment malfunctions through better predictive modeling not 
only safeguards expensive machinery but, more importantly, minimizes risks to the operators and staff.

Throughout our experiments, a consistent trend became evident: as the number of neurons incre-
ased, the model’s performance similarly enhanced. Further augmentations in neurons per layer amplified 
this positive outcome. This observation is not just academically interesting, but also bears significant 
implications for the future of ANN-based modeling in various industrial settings. It is also noticeable that 
the best result, observed in Figure 7 was obtained with the architecture that had the highest number of 
neurons, specifically 30 neurons equally divided into 3 layers.

Figure 7 - Mechanical Stress Estimates Produced by the Identified Architecture.

Source: The authors (2023).

While MRSE served as our primary yardstick for evaluating how well the neural model replicated 
real-world processes, during our iterative training process, we predominantly relied on the MSE for ba-
ckpropagation and optimization. This distinction is an important one, offering a nuanced understanding 
of the metrics behind our results. It’s also worth noting that our choice for the hyperbolic tangent sigmoid 
activation function for the hidden layers was deliberate, suggesting a potential area of study regarding 
the effects of alternative activation functions in comparable scenarios.

Although our ANN provided an impressive representation of the skin-pass mill on a simulation 
level, its transition to real-world application remains a step we are yet to take. This next phase, while 
promising, brings with it its own set of challenges and complexities. One of the primary hurdles we faced 
in our research was the logistics and intricacies associated with obtaining genuine mill data. Navigating 
through manual data transfers compounded by access restrictions and other operational constraints 
added another layer of challenge to our endeavor.

On a concluding note, our research offers a tantalizing hint that even more intricate ANN archi-
tectures might hold the potential to further reduce error margins. Yet, the practical implementation as 
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presented by Santos; Barcelos (2020) of these advanced models in real-time industrial operations, such 
as a skin-pass mill, demands a balanced examination of computational demands against the anticipated 
accuracy gains. As we reflect on our findings, our primary aspiration is that this study catalyzes further 
inquiry and innovation, marrying neural theory with industrial pragmatism in ever more effective ways.

6 CONCLUSIONS

Artificial neural networks can be fine-tuned through adjustments like neuron count per layer, layer 
numbers, and activation functions. Increased neurons, when evenly distributed across layers, lowered 
the MRSE (%), showing a moderate enhancement compared to earlier research. However, these findings, 
while consistent within this study, may not apply universally due to dataset-specific attributes influencing 
neural network performance.

A drawback of neural networks is their potential decreased generalization when faced with variable 
ranges outside their known boundaries. Addressing this issue should be a focus for subsequent research.

Future endeavors will explore if introducing additional input parameters, such as rolling force, 
enhances model accuracy. The priority remains understanding variable interrelations, ensuring the model 
encompasses all relevant physical parameters in the system dynamics. A streamlined network could 
also facilitate integration into the plant’s PLC controller.
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