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RESUMO
A crescente preocupação com os impactos ambientais e o esgotamen-
to das fontes de combustíveis fósseis o uso da tecnologia de células 
de combustível surge como uma alternativa. Essa tecnologia, que opera 
com gases de hidrogênio e oxigênio para produzir água e energia, des-
taca-se por sua capacidade de gerar energia sem emitir poluentes du-
rante o processo. Este estudo aprofunda-se no funcionamento de uma 
célula de combustível de membrana polimérica, realizando uma análise 
estatística da influência das pressões dos reagentes e da temperatura 
de operação nas concentrações de reagentes na interface eletrodo-
-membrana, potencial de Nernst, e nas curvas de polarização e potência 
da célula. Para alcançar isso, foi utilizado um modelo comercialmente 
disponível de célula de combustível, conhecido como Ballard Mark IV, 
operando dentro de intervalos de pressão de 1 a 3 atm e temperaturas 
variando de 60 a 90°C. As concentrações de reagentes e o potencial de 
Nernst foram observados se aproximando de uma distribuição normal 
padronizada. Por outro lado, tanto a voltagem de saída da célula, quanto 
a potência elétrica desenvolvida, mostraram desvio do comportamento 
normalizado na região de efeitos de concentração. Modelos de regres-
são apresentaram um alto coeficiente de determinação, conferindo con-
fiabilidade à formulação matemática. Condições operacionais ideais fo-
ram encontradas considerando a maximização da voltagem da célula, 
densidade de corrente, potência e eficiência. Neste estudo, a região de 
melhor eficiência da célula foi alcançada dentro de intervalos de pres-
são e temperatura de 2,5 a 3 atm e 78 a 90°C, respectivamente.

Palavras-chave:
célula Palavras-chave: célula de combustível; eficiência da célula; 
análise de distribuição de dados; modelos de regressão; projeto de 
experimentos.

ABSTRACT
The growing concern about environmental impacts and the depletion 
of fossil fuel sources has fueled research into new forms of energy 
derived from renewable sources. In this context, where the primary 
focus is on mitigating environmental pressures, the use of fuel cell 
technology appears as a way. This technology, which works on hy-
drogen and oxygen gases to produce water and energy, stands out 
for its capacity to generate power without emitting pollutants du-
ring the process. This study delves into the operation of a polymer 
membrane fuel cell, conducting a statistical analysis of the influence 
of reactant pressures and operating temperature on reactant con-
centrations at the electrode-membrane interface, Nernst potential, 
and the polarization and power curves of the cell. To achieve this, a 
commercially available fuel cell model, known as the Ballard Mark IV, 
was employed, working within pressure intervals of 1 to 3 atm and 
temperatures ranging from 60 to 90°C. The concentrations of reac-
tants and Nernst potential were seen to approximate a standardized 
normal distribution. Conversely, the cell output voltage, as well as the 
developed electrical power, showed deviation from normalized beha-
vior in the concentration effects region. Regression models proved a 
high coefficient of determination, thereby conferring reliability to the 
mathematical formulation. Optimal operational conditions were fou-
nd by considering the maximization of cell voltage, current density, 
power, and efficiency. In this study, the region of best cell efficiency 
was reached within pressure and temperature ranges of 2.5 to 3 atm 
and 78 to 90°C, respectively.
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fuel cell; cell efficiency; data distribution analysis; regression models; 
design of experiments.
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1 INTRODUCTION

The fuel cell is an electrochemical device that converts chemical energy into electrical energy when 
supplied with gaseous hydrogen and an oxidizing agent, which can be either oxygen gas or atmospheric 
air (LOPES et al., 2013). Its operational principle is akin to batteries and cells, with the distinction that its 
reactants are stored externally to the devices and are continuously supplied. The chemical conversion 
occurs through the oxidation of hydrogen at the anode and the reduction of the oxidizing agent at the 
cathode, resulting in water vapor and energy as products of this reaction. In essence, it is a clean tech-
nology that does not emit polluting gases or compounds contributing to the greenhouse effect.

The reaction mechanism involves injecting hydrogen gas at the anode, where electrochemical reac-
tions commence at the electrode/catalyst/electrolyte interface (LARMINIE e DICKS, 2003). Simultaneously, 
atmospheric air or oxygen is injected at the cathode. Ions formed at the anode interface pass through the 
electrolyte to the cathode, while electrons generated in the anode semi-reaction are transported through 
an external circuit to the cathode.

This study aims to contribute statistical models for predicting output variables based on crucial 
input variables of a polymer membrane cell, employing mathematical relationships derived from the data 
distribution of the analyzed parameters. The primary objective is to conduct a statistical analysis of the 
influence of operational variables such as hydrogen pressure, oxygen pressure, and operating temperature 
on output variables, including reactant concentrations, Nernst potential, cell voltage, electrical power, 
and fuel cell efficiency.

FUEL CELL MODEL 
The model of the commercial cell mentioned by Leo et al. (2010) and validated in the algorithm 

proposed by Laviola (2017) establishes the Nernst potential by Equation 1 and reactant concentrations 
by Equations 2 and 3.

V Nernst = 1,229 – 8,5*10-4T(T-298,15) + 4,3085*10-5(ln(PH2) + 1/2ln(PO2))
(1)

         (2)

         (3)

The model asserts that the output voltage of the fuel cell can be measured by subtracting the 
reversible voltage from the internal losses of the device, as expressed in Equation 4.

Cell = Nernst – Vohm– Vats

(4)

As the Vohm is recognized as the potential loss experienced by the electrical components of the cell, 
it can be represented by Equation 5 (LAVIOLA, 2017)

Vohm= Ω1∙ j∙ A + Ω2∙ T∙ j∙A + Ω3∙ j2∙A2       (5)                   

Ω1, Ω2, and Ω3 are parameters associated with ohmic losses and are presented in Table 1.
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Table 1 - Ohmic Loss Coefficient
Coefficient Value

Ω1  (Ω) -5,923157048805428x10-4

Ω2  (Ω/K) -2,027378096297902x10-6

Ω3  (Ω/A) -2,498597880151022x10-7

Source: Laviola (2017)

Another factor influencing the cell’s output voltage is the potential loss due to activation energy, 
which can be represented by Equation 6.

Vativ = ξ1 + ξ2T + ξ3Tln (A) + ξ4Tln(C02) +ξ5Tln(CH2) + ξ6Tln(jA)    (6) 

Laviola (2017) developed a model where Vativ in Equation 6 incorporates mass transport phenomena 
in the coefficients with indices 4 and 5. The coefficient values are defined in Table 2.

Table 2 - Activation Loss Coefficients

Coefficient Value

ξ1 (V) - 0,9440000

ξ2(V/K)  0,0028600

ξ3 (V/Kcm²)  0,0001970

ξ4 (V/Kmol)  0,0000430

ξ5 (V/Kmol)  0,0000780

ξ6 (V/KA) - 0,0001960
 

Source: Laviola (2017)

The determination of the output power of the hydrogen cell will be carried out using Equation 7 
(Laviola, 2017).

P = ncell∙ Vcell∙j∙A          (7)

2 STATISTICAL ANALYSIS OF THE CELL

The commercial fuel cell, recognized as the Ballard Mark IV, served as the reference model for this 
study (AMPHLETT, J.C et al, 1995). Leo et al (2010) details a fuel cell stack of this model with a mem-
brane area of 232 cm² and a cell count of 1435. Laviola (2017) developed a computational algorithm 
extracting variables such as reactant concentration, Nernst potential, output voltage, and electrical power 
from reactant pressures and operating temperature in this commercial cell model. The values obtained 
from the computational program closely align with experimental behavior, showing an average error of 
0.01%. The method employed in this study addresses the cell investigated by Leo et al (2010) using the 
magnitude values estimated by Laviola’s algorithm (2017). To achieve this, an analysis table was struc-
tured simulating various operational conditions for the cell. The pressure variable was considered in the 
range of 1 to 3 atm and the operating temperature variable was within the range of 60 to 90°C.

Upon data consolidation, statistical tools such as normality testing, linear regression, quadratic 
regression, and the design of experiments were applied. The software tools Excel and Minitab were used 
to predict dependable statistical models concerning the behavior of the output variables proposed in this 
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study and found the best cell operating configuration. The statistical approach is Illustrated in Flowchart 
1 in Figure 1.

Figure 1 – Statistical Analysis Flowchart

The authors (2024)

 The normality test will be conducted using the Anderson-Darling function, as indicated in Equation 
8 (BPI CONSULTING, 2011).

     (8)

Where n stands for the sample size, I denote the value of the analyzed parameter from an ascending 
order of data, and F (Xi) is a cumulative normal distribution function shown in Equation 9.

     (9)   

When the sample size is less than or equal to 200 elements, the equation above can be adapted 
using Equation 10, where the asterisk symbol corresponds to the test limited to this quantity of data.

        (10)

The normality test can be related to the p-value statistic, which, when exceeding 0.05, writes down 
data normality at a 95% confidence level. The computational program calculates the p-value based on 
different normality test values, with the criteria outlined below.
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The regression models will be based on the minimization of the error (residual) (BARBETLA et al., 
2004). For this purpose, the method of least squares will be employed, which is a powerful and widely 
used regression analysis method that is not restricted to linear relationships only. The value correspon-
ding to the sample coefficient  can be calculated using Equation 11.

         (11)

The sample coefficient  , standing for the slope of the line, can be expressed in Equation 12. 

        (12)

The bars placed atop the dependent and independent variables denote their mean values calcu-
lated over the sample data. Meanwhile, the index i shows the value of the input and output variables 
determined for each observed value. The coefficient of determination for a simple regression is obtained 
through Equation 13, where is the estimated value of the output variable.

         (13)

The least squares estimators of coefficients for the multiple linear and quadratic regression models 
are obtained through matrix equation 14, where X stands for the matrix of levels for each independent 
variable, and Y stands for the response matrix of output variables (HU et al., 2004).

        (14)

The estimated output variable follows Equation 15.

         (15)

The design of experiments will consist of the factorial planning 3k, and the response surface 
method represented through contour plots (FARQAD AL-HADEETHI et al., 2015). The statistical model 
for the factorial planning follows the same rule as multiple linear regression, meaning that Equations 14 
and 15 are adhered to.

3 RESULTS AND DISCUSSION

In the normality test, it was observed that the reactant concentration values concerning pressure 
variation follow a normal distribution, as the p-value yields a result exceeding 0.05. It can be affirmed 
that the sample data deviate from the mean by two times the standard deviation, considering the trea-
ted confidence interval is 95%. The data dispersion indicates that 50% of the data points lie above the 
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mean, and the other 50% lie below the mean. It is noteworthy that the Anderson-Darling values are the 
same as those obtained in the hydrogen concentration analysis. This phenomenon occurs because the 
function is strongly influenced by the size of the analyzed sample, which, in this case, remains constant. 
Regarding oxygen concentration, it is observed that the standard deviation is higher compared to hydro-
gen concentration. This implies that the data vary more around the mean when compared to hydrogen 
concentration. For the analysis with pressure variation, a sample size of 21 was considered. The normality 
test information is presented in Table 3.

Table 3 - Normality Test for Reactant Concentrations (10-7 mol/cm3)

Graph Sample size Mean Std deviation Anderson Darling P-value

21

14,56 4,517 0,23 0,778

14,75 4,577 0,23 0,778

14,84 4,604 0,23 0,778

21

17,57 5,449 0,23 0,778

16,14 5,007 0,23 0,778

15,52 4,816 0,23 0,778

 
The authors (2024)

The regression models for reactant concentration as a function of pressure variation are depicted 
in Figures 2 and 3.

Figure 2: Hydrogen concentration vs. partial pressure of hydrogen (A) 60°C and (B) 90°C.

The authors (2024)
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Figures 3: Oxygen concentration vs. oxygen partial pressure (A) 60°C and (B) 90°C.

The authors (2024)

The analysis with pressure variation indicates that the angular coefficients of each linear regression 
exhibit values very close to each other. In other words, the simple act of increasing pressure does not 
significantly contribute to the increase in reactant concentration. For instance, hydrogen gas operates 
on the catalytic surface where the platinum catalyst is located. The reaction mechanism of molecular 
hydrogen occurs sequentially and depends on the availability of the catalytic site, which is related to the 
saturation of the catalyst (SILVA et al., 2017). On the other hand, the consumption of oxygen gas at the 
cathode depends on the arrival of hydroxide ions that traverse the polymer membrane after the disso-
ciation of molecular hydrogen at the catalytic site.

The analysis of reactant concentration when the examined scenario involves temperature variation 
exhibits a larger dispersion around the mean concentration. In the case of reactant concentration with 
temperature variation, a sample size of 31 data points was considered. The normality test results are 
presented in Table 4.

Table 4 - Normality Test for Oxygen Concentration (10-7 mol/cm3)

Graph Sample size Mean Std Deviation Anderson Darling P-value

31

7,352 0,04256 0,334 0,49

14,7 0,08511 0,334 0,49

22,06 0,1277 0,334 0,49

31

8,248 0,3091 0,343 0,467

16,50 0,6182 0,343 0,467

24,74 0,9274 0,343 0,467

 
The authors (2024)

It is seen that there was a decrease in the p-value compared to the analysis with pressure variation. 
This occurred due to the increase in the sample size. Nevertheless, it can still be asserted that the data 
follows a normalized distribution, as the obtained value is above the test statistic. It is noted that the 
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data dispersion was greater in the oxygen concentration. The regression curve analysis for the reactant 
concentration is presented in Figures 5 and 6.

Figures 5: Concentration of the reactants vs. temperature at 1 atm (atmosphere).

The authors (2024)

Figures 6: Concentration of the reactants vs. temperature at 3 atm (atmosphere).

The authors (2024)

The angular coefficients of each linear regression exhibit different values. The line with a steeper 
incline, i.e., a higher angular coefficient, contributes to the increase in hydrogen concentration on the 
catalytic surface using a narrower temperature range, thereby reaching catalyst saturation at a lower 
operating temperature. The temperature increases with low reactant pressure - 1 atm may create a 
mismatch between hydrogen consumption and the arrival of this reactant at the catalytic layer. For oxy-
gen concentration, the angular coefficient is negative, indicating a decreasing function (CAMPOS et al., 
2018). This can be explained by the temperature increase favoring the arrival of hydroxide ions available 
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to reduce oxygen on the cathode side. The analysis of the average change in oxygen concentration per 
temperature interval follows the same interpretation as hydrogen concentration but with a decrease in 
the reactant. Understanding how oxygen gas behaves at the electrode-membrane interface is crucial, as 
an increase in concentration at the interface allows for an increased contact surface between oxygen 
molecules and hydroxide ions (MORENO et al., 2017).

After presenting the graphs of the data distribution related to the reactant gases, let’s discuss 
the influence of pressure and temperature on the Nernst potential. The data distribution analysis for the 
Nernst potential with different pressure values is presented in Table 5, where the mean of the analyzed 
magnitude, standard deviation, sample size, and Anderson-Darling test will be verified.

Table 5 - Normality Test for Nernst Potential with Pressure Variation (Volts - V)

Graph Sample size Mean Std Deviation Anderson Darling P-value

21

1,216 0,004779 0,32 0,51

1,20 0,05067 0,32 0,51

1,192 0,005210 0,32 0,51

1,218 0,002390 0,32 0,51

1,203 0,002533 0,32 0,51

1,195 0,002605 0,32 0,51

 
The authors (2024)

All previously mentioned characteristics of a normal curve are also reproduced for this analysis. 
The average result of the Nernst potential was close to the theoretical maximum potential in the analyses 
with pressure variation. The regression curves are presented in Figures 7 and 8.

Figure 7: Nernst Potential vs Hydrogen Pressure. (A) 60°C and (B) 90°C.

The authors (2024)
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Figure 8: Nernst Potential vs. Oxygen Pressure. (A) 60°C and (B) 90°C.

The authors (2024)

In general, both the increase in hydrogen partial pressure and oxygen partial pressure lead to a 
small increment in the open-circuit potential. However, this relationship should be managed with care 
because at higher temperatures, it will result in an increase in the amount of water produced on the ca-
thode side, potentially causing blockages in the gas diffusion channels, hindering the arrival of reactants 
at the electrode-membrane interface, thus leading to a performance drop in the cell over time. The data 
distribution analysis for the open-circuit potential with different temperature values is presented in Table 
6, where the mean of the analyzed magnitude, standard deviation, sample size, and Anderson-Darling 
test will be verified.

Table 6 – The normality test for the Nersnt potential varying the temperature.

Graphic Mean Std deviation Anderson Darling P-value

1,187 0,007692 0,331 0,498

1,202 0,007285 0,331 0,498

1,212 0,007046 0,331 0,498

 
The authors, (2024)

The normality test for the variation of the Nernst potential with a change in temperature appears 
similarly to the Nernst potential with pressure variation. In Figures 9 and 10, the behavior of the open-circuit 
potential as a function of temperature with the same pressure value for hydrogen and oxygen is seen.
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Figure 9: Nernst Potential vs. Temperature. (A) 1 atm and (B) 3 atm.

The authors (2024)

The thermodynamics of the cell and the open-circuit potential can be significantly affected by the 
operating temperature. Increasing the temperature will decrease the open-circuit potential. Temperature 
also influences proton conductivity and the passage of hydrogen through the membrane, as a temperature 
increase tends to be detrimental to the hydration of the polymer membrane. These effects are reflected 
in the overall performance of the fuel cell through the study of the polarization curve.

The characterization of a fuel cell is done through the polarization curve. This curve aims to relate 
the cell potential to the current density supplied by the cell, showing the points and effects that cause 
losses. Evaluating a typical polarization curve, we can highlight the main ranges with considerable losses 
related to activation, ohmic, and mass transport phenomena. The ohmic drop is represented in Figure 10. 

Figure 10: Ohmic drop vs Current Density. (A) 1 atm and (B) 3 atm.

The authors (2024)

Pressure does not play a significant role in ohmic resistance with temperature being the determi-
ning factor in this phase. The performance improvement at higher temperatures is primarily due to the 
increased presence of protons in the membrane leading to an increase in its conductivity. However, an 
increase in temperature may lead to membrane dehydration, component degradation, and an increase in 
the hydrogen crossover rate due to the increased permeability coefficient of this element. Ohmic resistan-
ce plays a significant role in intermediate ranges of current density. The ohmic voltage values obtained 
for temperatures of 60°C, 80°C, and 90°C were 0.29 Ω.cm-2, 0.25 Ω.cm-2, and 0.24 Ω.cm-2, respectively. 
Resistance values are characterized by the slope of the line.



www.unifoa.edu.br/revistasp. 12

Modelo de análise estatística de uma célula de combustível de membrana de troca de próton

The other portion of loss is associated with activation polarization, which is related to the difficulty 
of the chemical reaction occurring due to the need to overcome an energy barrier between the reactants 
and the product. The behavior of this process under different pressure and temperature conditions is 
represented in Figure 11.

Figure 11: Voltage drop due to activation vs current density. (A) 1 atm and (B) 3 atm. 

The authors (2024)

Graphical interpretation allows for verifying the operational situation that will lead to the best 
chemical kinetics condition. The lowest potential drop is represented by a partial pressure of 3 atm and 
an operating temperature of 90ºC. This occurs due to the greater availability of reactants in the gas dif-
fusion channels and the increased probability of molecule collisions at a higher operating temperature. 
The role of the catalyst also equally influences the curves, as it is active in all conditions. Minimizing the 
drop due to polarization represents a relevant situation in the analysis because it is the most significant 
irreversible process in a fuel cell representing the major contribution to the voltage drop. In Laviola’s 
formulation (2017), the concentration loss was considered one of the components of activation voltage.

The graph indicating the cell output voltage by the obtained current density is what the literature calls 
the polarization curve. Defining the cell voltage drop is of fundamental importance, as it allows for calculating 
the efficiency of the electrochemical device. A lower potential drop indicates better efficiency, i.e., the smaller 
the distance between the open-circuit potential and the polarization curve the better the cell efficiency.

The data distribution analysis for the cell output voltage with different pressure and temperature 
values is presented in Table 7, where the mean of the analyzed magnitude, standard deviation, sample 
size, and Anderson-Darling test will be verified.
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Table 7 - Normality Test for Cell Output Voltage (Volts - V)

Graph Sample size Mean Std deviation Anderson Darling P-value

200

0,4415 0,2069 1,091 0,007

0,4791 0,1922 1,008 0,011

0,4979 0,1849 0,971 0,014

0,4844 0,2069 1,091 0,007

0,5245 0,1922 1,008 0,011

0,5446 0,1849 0,971 0,014

0,5094 0,2069 1,091 0,007

0,5511 0,1922 1,008 0,011

0,5719 0,1849 0,971 0,014

 
The authors (2024)

In the case of the polarization curve, it was observed that the output voltage data does not follow 
a normal distribution as the p-value is below 0.05. The Anderson-Darling test close to 1 indicates that the 
data of the analyzed magnitude are far from the perfect normal curve. The lack of normality in the data 
occurs in the region of concentration effects at low voltage and high current density. The polarization 
curves for different pressure and temperature conditions are represented in Figure 12.

Figure 12: Output voltage vs. current density. (A) 1 atm and (B) 3 atm.

The authors (2024)

Through graphical analysis, it is observed that in the cases analyzed in this section, the best 
condition occurs when the operating temperature is 90°C and the pressure is 3 atm as it promotes the 
smallest slope of the curve concerning the Nernst potential.

The data distribution analysis for the power developed by the cell at different pressure and tem-
perature values is presented in Table 8, where the mean of the analyzed magnitude, standard deviation, 
sample size, and Anderson-Darling test will be verified.
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Table 8 - Normality Test for Cell Output Power (Kilowatt - kW)

Graph Sample size Mean Std deviation Anderson Darling P-value

200

67,89 24,45 6,872 < 0,005

77,57 27,59 9,414 < 0,005

82,41 29,73 10,954 <0,005

76,88 27,17 8,080 < 0,005

87,10 31,52 11,128 < 0,005

92,21 34,25 12,128 <0,005

82,4 29,10 9,039 < 0,005

92,67 34,06 11,837 < 0,005

97,94 37,03 12,418 <0,005

 
The authors (2024)

The power data also does not follow a normal distribution as the p-value is below 0.05. The lack 
of normality occurred again in the cell concentration effect region. In this case, the Anderson-Darling test 
showed high values deviating significantly from a perfect normal curve. Figure 13 illustrates power as a 
function of current density under different pressure and temperature conditions.

Figure 13: Output Power vs Current Density. (A) 1 atm and (B) 3 atm.

The authors (2024)

Through graphical analysis, it is observed that in the mentioned cases the best condition occurs 
with an operating temperature of 90°C as it promotes the steepest slope of the curve. The polarization 
curve and power developed by the cell show the best operational conditions through graphical analysis. 
However, such an approach is insufficient as it creates a restriction by not analyzing all possible pres-
sure and temperature conditions and not discussing the cell efficiency. In order to make the analysis 
more comprehensive, a design of experiments is used through factorial planning and response surface 
methodology. The factorial design is represented in Figures 14, 15 and 16.
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Figure 14: Interaction of Factors V

The authors (2024)

Figure 15: Interaction of Factors P

The authors (2024)
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Figure 16: Efficiency Interaction

The authors (2024)

Observing the interactions of the operational variables, the best conditions that maximized voltage, 
power, and efficiency through factorial planning were at a pressure of 3 atm and an operating temperature 
of 90°C. Factorial planning uses an average value to represent the response variable and can predict 
the interactions between factors. The results align with the results obtained in the graphical analysis of 
the cell’s polarization and power curve. This design of the experiment model works with fixed levels of 
factors, able to infer behavior through these benchmarks. To verify the efficiency behavior across the 
entire range of pressure and temperature values, response surfaces of efficiency are plotted in the con-
tour plots of Figures 17, 18, and 19.

Figure 17: Efficiency (%) x PO2(atm) x PH2(atm)

The authors (2024)
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Figure 18: Efficiency (%) x T(°C) x PH2 (atm)

The authors (2024)

Figure 19: Efficiency (%) vs. Temperature (°C) vs. PO2 (atm)

The authors (2024)

The level curves show that higher efficiency regions are more sensitive to variation of oxygen 
pressure from the temperature range of 75ºC. Temperatures below 70ºC and pressures below 1,5 atm 
indicate worse efficiency. When checking the contour points of the level curves it can be seen that the 
best efficiencies occur in the inferior limit of 2,5 atm of pressure and 78ºC and in the superior limit of 3 
atm of pressure and 90ºC.   

4 CONCLUSION

The use of statistical tools in fuel cells allows predicting the behavior of variables affecting the 
performance of this technology. In the commercial model Ballard Mark IV, the subject of this study, it was 
seen that the distribution of data for the variables of hydrogen concentration, oxygen concentration, and 
Nernst potential approached a standardized normal distribution with symmetric data around the mean, 
confirmed through the p-value parameter. However, the cell’s output voltage and electrical power deviated 
from a normalized behavior in the concentration effects region. This occurred because the data in this 
region were outside the 95% confidence interval adopted as a criterion for statistical analysis.
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The regression curves showed a good fit for the pressure and temperature intervals used reprodu-
cing with low residue the experimental cell used as a model for this work. The coefficient of determination 
denoted by R² ranged from 98% to 100%.

For hydrogen concentration, pressure variation played no significant role due to the sequential 
breaking of hydrogen molecules and their dependence on the ability of the platinum catalyst found in the 
active sites. An increase in temperature favored an increase in hydrogen concentration in the catalytic 
layer because of the higher kinetic energy of hydrogen molecules and a higher probability of collision, 
filling the platinum active sites more quickly.

Pressure variation for oxygen concentration also had no significant effect behaving similarly to 
hydrogen concentration under this operational parameter. On the other hand, an increase in temperature 
caused a decrease in oxygen at the electrode-membrane interface displaying a decreasing function in 
the statistical model. This is explained by more hydroxide ions reaching the cathode to react with the 
oxygen gas.

Regarding the Nernst potential, there was a decrease with an increase in temperature due to the 
higher water pressure in the system resulting in lower hydrogen and oxygen pressures. However, there 
was a slight increase in the Nernst potential with increasing pressure explained by the increased availa-
bility of reactants to perform the chemical reaction and produce electrical work.

In the polarization curves, regression models showed higher residue in the activation region. In 
the power curves, regression models showed higher residue in the concentration effects region. This 
dispersion can be explained because most of the sampled data belonged to the cell’s ohmic region. 
Therefore, the regression model adjusted the equation to meet the broader sample range and reproduced 
the higher coefficient of determination.

Graphical analyses of polarization and power curves allow verification of cell efficiency through 
the least electrical potential drop aligned with maximum power. The statistical technique of design of 
experiments allows finding the best combination of operational variable values, within the established 
operation range in this work, to perfect voltage, current density, power, and efficiency parameters. For this 
dissertation, the region of the cell’s best efficiency was achieved at pressure and temperature intervals 
of 2.5 to 3 atm and 78 to 90°C, respectively. The results for voltage, current density, power, and efficiency 
were seen to be 0.42 V, 1.215 A/cm², 119.72 kW, and 35% for 2.5 atm and 78°C, and 0.44 V, 1.296 A/cm², 
132.17 kW, and 37% for 3 atm and 90°C. It was observed that the best condition always occurred in the 
ohmic region of the cell.
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