The Silent Revolution
how AlphaFold redefined Structural Biology and opened new frontiers in science
DOI:
https://doi.org/10.47385/cadunifoa.v20.n55.5859Keywords:
AlphaFold, Structural Biology, Protein Folding, Artificial IntelligenceAbstract
For half a century, determining the three-dimensional structure of a protein from its amino acid sequence has represented one of the greatest challenges in biology. The understanding of molecular function, drug development, and protein engineering depended on overcoming this obstacle. In 2020, AlphaFold, an artificial intelligence system developed by DeepMind, emerged as a revolutionary solution, predicting structures with atomic accuracy previously unattainable by computational methods. This review outlines the significance of the protein folding problem, the conceptual foundations of AlphaFold, and its transformative impact. The release of hundreds of millions of structures via the AlphaFold DB has democratized access to structural information, accelerating research in drug development, biotechnology, and fundamental biology. However, despite its revolutionary nature, the method possesses intrinsic limitations, such as the prediction of static conformations and the inability to directly model the effect of ligands, which demand a critical and conscientious analysis of its results. AlphaFold is not an endpoint, but the beginning of a new era of "digital biology," in which the synergistic integration of computational prediction and experimental validation promises to unveil the mechanisms of life at an unprecedented level of detail.
Downloads
References
ABRIATA, L. The Nobel Prize in Chemistry: past, present, and future of AI in biology. Communications Biology, v. 7, n. 1, p. 1409, 2024. DOI: https://doi.org/10.1038/s42003-024-07113-5
ANFINSEN, C. B. Principles that govern the folding of protein chains. Science, v. 181, n. 4096, p. 223-30, 1973. DOI: https://doi.org/10.1126/science.181.4096.223
BOUATTA, N. et al.. Protein structure prediction by AlphaFold2: are attention and symmetries all you need?. Biological Crystallography, v. 77, n. 8, p. 982-991, 2021.
CALLAWAY, Ewen. ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures. Nature, v. 588, p. 203-204, 2020. DOI: https://doi.org/10.1038/d41586-020-03348-4
CASWELL, Richard C. et al. Assessing the clinical utility of protein structural analysis in genomic variant classification: experiences from a diagnostic laboratory. Genome Medicine, v. 14, n. 1, p. 77, 2022. DOI: https://doi.org/10.1186/s13073-022-01082-2
CHANG, L. et al. Revolutionizing peptide‐based drug discovery: advances in the post‐AlphaFold era. Wiley Interdisciplinary Reviews: Computational Molecular Science, v. 14, n. 1, p. e1693, 2024. DOI: https://doi.org/10.1002/wcms.1693
CHEN, L. et al. AI-driven deep learning techniques in protein structure prediction. International journal of molecular sciences, v. 25, n. 15, p. 8426, 2024. DOI: https://doi.org/10.3390/ijms25158426
CRAMER, P. AlphaFold2 and the future of structural biology. Nature structural & molecular biology, v. 28, n. 9, p. 704-705, 2021. DOI: https://doi.org/10.1038/s41594-021-00650-1
CUI, X. et al. Beyond static structures: protein dynamic conformations modeling in the post-AlphaFold era. Briefings in bioinformatics, v. 26, n. 4, p. bbaf340, 2025. DOI: https://doi.org/10.1093/bib/bbaf340
DILL, K. A.; MACCALLUM, J. L. The Protein-Folding Problem, 50 Years On. Science, v. 338, n. 6110, p. 1042-6, 2012. DOI: https://doi.org/10.1126/science.1219021
FOUDAH, A. et al. Quantum chemical optimization and residue-specific stabilization of CDK20 inhibitors in hepatocellular carcinoma. Molecular Diversity, p. 1-22, 2025. DOI: https://doi.org/10.1007/s11030-025-11339-8
GRECH, S. et al. The Role of Artificial Intelligence in Identifying NF1 Gene Variants and Improving Diagnosis. Genes, v. 16, n. 5, p. 560, 2025. DOI: https://doi.org/10.3390/genes16050560
GUAN, L.; KEATING, A. How AlphaFold and related models predict protein-peptide complex structures. bioRxiv, p. 2025.06. 18.660495, 2025. DOI: https://doi.org/10.1101/2025.06.18.660495
GUZENKO, D.; LAFITA, A.; MONASTYRSKYY, B.; KRYSHTAFOVYCH, A.; DUARTE, J. M. Assessment of protein assembly prediction in CASP13. Proteins: Structure, Function, and Bioinformatics, v. 87, n. 12, p. 1190–1199, 2019 DOI: https://doi.org/10.1002/prot.25795
JUMPER, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature, v. 596, n. 7873, p. 583-9, 2021. DOI: https://doi.org/10.1038/s41586-021-03819-2
KHOURY, G. A.; BALIBAN, R. C.; FLOUDAS, C. A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Scientific reports, v. 4, n. 1, p. 1-8, 2014. DOI: https://doi.org/10.1038/srep00090
KIM, D. et al. Parametrically guided design of beta barrels and transmembrane nanopores using deep learning. BioRxiv, p. 2024.07. 22.604663, 2025. DOI: https://doi.org/10.1101/2024.07.22.604663
LAURENSON, A. et al. In Silico Prediction of Plasmodium falciparum PfRipr Epitopes as Vaccine Candidates. Journal of the Pediatric Infectious Diseases Society, v. 12, n. Supplement_1, p. S5-S6, 2023. DOI: https://doi.org/10.1093/jpids/piad070.012
LU, H. et al. Machine learning-aided engineering of hydrolases for PET degradation. Nature, v. 604, n. 7907, p. 662-7, 2022. DOI: https://doi.org/10.1038/s41586-022-04599-z
LIN, Pei-Yu et al. Analysing protein complexes in plant science: insights and limitation with AlphaFold 3. Botanical Studies, v. 66, n. 1, p. 14, 2025. DOI: https://doi.org/10.1186/s40529-025-00462-2
MOLOTKOV, I. et al. Making sense of missense: challenges and opportunities in variant pathogenicity prediction. Disease Models & Mechanisms, v. 17, n. 12, p. dmm052218, 2024. DOI: https://doi.org/10.1242/dmm.052218
MUBEEN, Hira et al. Insights into AlphaFold’s breakthrough in neurodegenerative diseases. Irish Journal of Medical Science (1971-), v. 193, n. 5, p. 2577-2588, 2024. DOI: https://doi.org/10.1007/s11845-024-03721-6
REN, F. et al. AlphaFold accelerates artificial intelligence powered drug discovery: efficient discovery of a novel CDK20 small molecule inhibitor. Chemical science, v. 14, n. 6, p. 1443-1452, 2023. DOI: https://doi.org/10.1039/D2SC05709C
RENNIE, Martin Luke; OLIVER, Michael R. Emerging frontiers in protein structure prediction following the AlphaFold revolution. Journal of the Royal Society Interface, v. 22, n. 225, p. 20240886, 2025. DOI: https://doi.org/10.1098/rsif.2024.0886
SARVEPALLI, S.; VADAREVU, S. Role of artificial intelligence in cancer drug discovery and development. Cancer Letters, p. 217821, 2025. DOI: https://doi.org/10.1016/j.canlet.2025.217821
SUN, Zheng. Generative AI in Protein Design: De novo Protein Design and Multi-Motif Scaffolding. 2025.
VARADI, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic acids research, v. 50, n. D1, p. D439-44, 2022. DOI: https://doi.org/10.1093/nar/gkab1061
WLODAWER, A. et al. Protein crystallography for non-crystallographers, or how to get the best (but not more) from published structures. The FEBS journal, v. 274, n. 19, p. 4971-85, 2008.
ZHANG, G. et al. The Role of AI-Driven De Novo Protein Design in the Exploration of the Protein Functional Universe. Biology, v. 14, n. 9, p. 1268, 2025. DOI: https://doi.org/10.3390/biology14091268
ZHAO, X. et al. AlphaFold’s Predictive Revolution in Precision Oncology. AI in Precision Oncology, v. 1, n. 3, p. 160-167, 2024. DOI: https://doi.org/10.1089/aipo.2024.0010
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Cadernos UniFOA

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Declaração de Transferência de Direitos Autorais - Cadernos UniFOA como autor(es) do artigo abaixo intitulado, declaro(amos) que em caso de aceitação do artigo por parte da Revista Cadernos UniFOA, concordo(amos) que os direitos autorais e ele referentes se tornarão propriedade exclusiva desta revista, vedada qualquer produção, total ou parcial, em qualquer outra parte ou meio de divulgação, impressa ou eletrônica, sem que a prévia e necessária autorização seja solicitada e, se obtida, farei(emos) constar o agradecimento à Revista Cadernos UniFOA, e os créditos correspondentes. Declaro(emos) também que este artigo é original na sua forma e conteúdo, não tendo sido publicado em outro periódico, completo ou em parte, e certifico(amos) que não se encontra sob análise em qualquer outro veículo de comunicação científica.
O AUTOR desde já está ciente e de acordo que:
- A obra não poderá ser comercializada e sua contribuição não gerará ônus para a FOA/UniFOA;
- A obra será disponibilizada em formato digital no sítio eletrônico do UniFOA para pesquisas e downloads de forma gratuita;
- Todo o conteúdo é de total responsabilidade dos autores na sua forma e originalidade;
- Todas as imagens utilizadas (fotos, ilustrações, vetores e etc.) devem possuir autorização para uso;
- Que a obra não se encontra sob a análise em qualquer outro veículo de comunicação científica, caso contrário o Autor deverá justificar a submissão à Editora da FOA, que analisará o pedido, podendo ser autorizado ou não.
O AUTOR está ciente e de acordo que tem por obrigação solicitar a autorização expressa dos coautores da obra/artigo, bem como dos professores orientadores antes da submissão do mesmo, se obrigando inclusive a mencioná-los no corpo da obra, sob pena de responder exclusivamente pelos danos causados.
