La Revolución Silenciosa

cómo AlphaFold redefinió la Biología Estructural y abrió nuevas fronteras en la ciencia

Autores/as

DOI:

https://doi.org/10.47385/cadunifoa.v20.n55.5859

Palabras clave:

AlphaFold, Biología estructural, plegamiento de proteínas, Inteligencia artificial

Resumen

Durante medio siglo, determinar la estructura tridimensional de una proteína a partir de su secuencia de aminoácidos representó uno de los mayores desafíos de la biología. Comprender la función molecular, el desarrollo de fármacos y la ingeniería de proteínas dependía de superar este obstáculo. En 2020, AlphaFold, un sistema de inteligencia artificial desarrollado por DeepMind, surgió como una solución revolucionaria, capaz de predecir estructuras con una precisión atómica previamente inalcanzable mediante métodos computacionales. Esta revisión describe la importancia del problema del plegamiento de proteínas, los fundamentos conceptuales de AlphaFold y su impacto transformador. La disponibilidad de cientos de millones de estructuras a través de AlphaFold DB ha democratizado el acceso a la información estructural, acelerando la investigación en el desarrollo de fármacos, la biotecnología y la biología fundamental. Sin embargo, a pesar de su naturaleza revolucionaria, el método presenta limitaciones intrínsecas, como la predicción de conformaciones estáticas y la imposibilidad de modelar directamente los efectos de los ligandos, lo que requiere un análisis crítico y minucioso de sus resultados. AlphaFold no es un punto final, sino el comienzo de una nueva era de "biología digital", en la que la integración sinérgica de la predicción computacional y la validación experimental promete desentrañar los mecanismos de la vida a un nivel de detalle sin precedentes.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Paulo Henrique Matayoshi Calixto, Instituto Federal Goiano

Biomédico, Doutor em Medicina Tropical e Infectologia. Professor de Ciências da Saúde do Instituto Federal Goiano, campus Rio Verde.

Citas

ABRIATA, L. The Nobel Prize in Chemistry: past, present, and future of AI in biology. Communications Biology, v. 7, n. 1, p. 1409, 2024. DOI: https://doi.org/10.1038/s42003-024-07113-5

ANFINSEN, C. B. Principles that govern the folding of protein chains. Science, v. 181, n. 4096, p. 223-30, 1973. DOI: https://doi.org/10.1126/science.181.4096.223

BOUATTA, N. et al.. Protein structure prediction by AlphaFold2: are attention and symmetries all you need?. Biological Crystallography, v. 77, n. 8, p. 982-991, 2021.

CALLAWAY, Ewen. ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures. Nature, v. 588, p. 203-204, 2020. DOI: https://doi.org/10.1038/d41586-020-03348-4

CASWELL, Richard C. et al. Assessing the clinical utility of protein structural analysis in genomic variant classification: experiences from a diagnostic laboratory. Genome Medicine, v. 14, n. 1, p. 77, 2022. DOI: https://doi.org/10.1186/s13073-022-01082-2

CHANG, L. et al. Revolutionizing peptide‐based drug discovery: advances in the post‐AlphaFold era. Wiley Interdisciplinary Reviews: Computational Molecular Science, v. 14, n. 1, p. e1693, 2024. DOI: https://doi.org/10.1002/wcms.1693

CHEN, L. et al. AI-driven deep learning techniques in protein structure prediction. International journal of molecular sciences, v. 25, n. 15, p. 8426, 2024. DOI: https://doi.org/10.3390/ijms25158426

CRAMER, P. AlphaFold2 and the future of structural biology. Nature structural & molecular biology, v. 28, n. 9, p. 704-705, 2021. DOI: https://doi.org/10.1038/s41594-021-00650-1

CUI, X. et al. Beyond static structures: protein dynamic conformations modeling in the post-AlphaFold era. Briefings in bioinformatics, v. 26, n. 4, p. bbaf340, 2025. DOI: https://doi.org/10.1093/bib/bbaf340

DILL, K. A.; MACCALLUM, J. L. The Protein-Folding Problem, 50 Years On. Science, v. 338, n. 6110, p. 1042-6, 2012. DOI: https://doi.org/10.1126/science.1219021

FOUDAH, A. et al. Quantum chemical optimization and residue-specific stabilization of CDK20 inhibitors in hepatocellular carcinoma. Molecular Diversity, p. 1-22, 2025. DOI: https://doi.org/10.1007/s11030-025-11339-8

GRECH, S. et al. The Role of Artificial Intelligence in Identifying NF1 Gene Variants and Improving Diagnosis. Genes, v. 16, n. 5, p. 560, 2025. DOI: https://doi.org/10.3390/genes16050560

GUAN, L.; KEATING, A. How AlphaFold and related models predict protein-peptide complex structures. bioRxiv, p. 2025.06. 18.660495, 2025. DOI: https://doi.org/10.1101/2025.06.18.660495

GUZENKO, D.; LAFITA, A.; MONASTYRSKYY, B.; KRYSHTAFOVYCH, A.; DUARTE, J. M. Assessment of protein assembly prediction in CASP13. Proteins: Structure, Function, and Bioinformatics, v. 87, n. 12, p. 1190–1199, 2019 DOI: https://doi.org/10.1002/prot.25795

JUMPER, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature, v. 596, n. 7873, p. 583-9, 2021. DOI: https://doi.org/10.1038/s41586-021-03819-2

KHOURY, G. A.; BALIBAN, R. C.; FLOUDAS, C. A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Scientific reports, v. 4, n. 1, p. 1-8, 2014. DOI: https://doi.org/10.1038/srep00090

KIM, D. et al. Parametrically guided design of beta barrels and transmembrane nanopores using deep learning. BioRxiv, p. 2024.07. 22.604663, 2025. DOI: https://doi.org/10.1101/2024.07.22.604663

LAURENSON, A. et al. In Silico Prediction of Plasmodium falciparum PfRipr Epitopes as Vaccine Candidates. Journal of the Pediatric Infectious Diseases Society, v. 12, n. Supplement_1, p. S5-S6, 2023. DOI: https://doi.org/10.1093/jpids/piad070.012

LU, H. et al. Machine learning-aided engineering of hydrolases for PET degradation. Nature, v. 604, n. 7907, p. 662-7, 2022. DOI: https://doi.org/10.1038/s41586-022-04599-z

LIN, Pei-Yu et al. Analysing protein complexes in plant science: insights and limitation with AlphaFold 3. Botanical Studies, v. 66, n. 1, p. 14, 2025. DOI: https://doi.org/10.1186/s40529-025-00462-2

MOLOTKOV, I. et al. Making sense of missense: challenges and opportunities in variant pathogenicity prediction. Disease Models & Mechanisms, v. 17, n. 12, p. dmm052218, 2024. DOI: https://doi.org/10.1242/dmm.052218

MUBEEN, Hira et al. Insights into AlphaFold’s breakthrough in neurodegenerative diseases. Irish Journal of Medical Science (1971-), v. 193, n. 5, p. 2577-2588, 2024. DOI: https://doi.org/10.1007/s11845-024-03721-6

REN, F. et al. AlphaFold accelerates artificial intelligence powered drug discovery: efficient discovery of a novel CDK20 small molecule inhibitor. Chemical science, v. 14, n. 6, p. 1443-1452, 2023. DOI: https://doi.org/10.1039/D2SC05709C

RENNIE, Martin Luke; OLIVER, Michael R. Emerging frontiers in protein structure prediction following the AlphaFold revolution. Journal of the Royal Society Interface, v. 22, n. 225, p. 20240886, 2025. DOI: https://doi.org/10.1098/rsif.2024.0886

SARVEPALLI, S.; VADAREVU, S. Role of artificial intelligence in cancer drug discovery and development. Cancer Letters, p. 217821, 2025. DOI: https://doi.org/10.1016/j.canlet.2025.217821

SUN, Zheng. Generative AI in Protein Design: De novo Protein Design and Multi-Motif Scaffolding. 2025.

VARADI, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic acids research, v. 50, n. D1, p. D439-44, 2022. DOI: https://doi.org/10.1093/nar/gkab1061

WLODAWER, A. et al. Protein crystallography for non-crystallographers, or how to get the best (but not more) from published structures. The FEBS journal, v. 274, n. 19, p. 4971-85, 2008.

ZHANG, G. et al. The Role of AI-Driven De Novo Protein Design in the Exploration of the Protein Functional Universe. Biology, v. 14, n. 9, p. 1268, 2025. DOI: https://doi.org/10.3390/biology14091268

ZHAO, X. et al. AlphaFold’s Predictive Revolution in Precision Oncology. AI in Precision Oncology, v. 1, n. 3, p. 160-167, 2024. DOI: https://doi.org/10.1089/aipo.2024.0010

Publicado

2025-12-22

Cómo citar

MATAYOSHI CALIXTO, Paulo Henrique. La Revolución Silenciosa: cómo AlphaFold redefinió la Biología Estructural y abrió nuevas fronteras en la ciencia. Cadernos UniFOA, Volta Redonda, v. 20, n. 55, p. 1–11, 2025. DOI: 10.47385/cadunifoa.v20.n55.5859. Disponível em: https://revistas.unifoa.edu.br/cadernos/article/view/5859. Acesso em: 24 dic. 2025.

Número

Sección

Ciências Biológicas e da Saúde