Mass balance and watmmmaer demand in the process of alkaline pretreatment of the main brewery residue

Authors

  • Carla Lobo Gomes Mestre em Engenharia Química Universidade Federal de Goiás, UFG, Brasil
  • Jozianny Bárbara de Almeida Mestre em Engenharia Química Universidade Federal de Goiás, UFG, Brasil
  • Dasciana de Souza Rodrigues Doutora em Engenharia Química. Embrapa Agroenergia
  • Carlos Alberto Galeano Suarez Doutor em Engenharia Química. Universidade Federal de Goiás, UFG, Brasil
  • Inti Doraci Cavalcanti Montano Doutor em Engenharia Química. Universidade Federal de Goiás, UFG, Brasil

DOI:

https://doi.org/10.47385/cadunifoa.v18.n53.4722

Keywords:

Lignocellulosic material, characterization, Brewers' spent grain, Biotechnological processes

Abstract

Alkaline pretreatment is one of the most effective processes in lignin removal for different types of lignocellulosic materials. However, the generation of a large amount of black liquor with a high excess of hydroxyl ions (OH-), in addition to the wastewater generated in the biomass washing steps, are some of the main problems with using this type of pretreatment. This work aims to show, through a case study, the water consumption required to carry out this type of pretreatment. Brewer's spent grain (BSG) was used as lignocellulosic material to carry out alkaline pretreatment with 4% NaOH and to quantify the water used in the process. A global mass balance during the BSG delignification process allowed identifying a global recovery percentage of 87.92% of cellulose, 84.56% of hemicellulose and 87.63% of lignin of the total material fed into the delignification process. For quantifying the main components present in the studied BSG, it was necessary to characterize the washing water of the solids obtained in the pretreatment. At the end of the process, approximately 0.50 g of cellulose, 0.71 g of hemicellulose and 0.97 g of lignin were lost in relation to the grams fed, initially in the delignification process. The water demand during the process was 131, 2 mL per g of dry material.

Downloads

Download data is not yet available.

References

ALIYU, S.; BALA, M. Brewer’s spent grain: a review of its potentials and applications. African Journal of Biotechnology, v. 10, p. 324−331, 2011. DOI: https://doi.org/10.5897/AJB11.2761

ALVIRA, P.; TOMÁS-PEJÓ, E.; BALLESTEROS, M.; NEGRO, M. J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, v. 101, p. 4851–4861, 2010. DOI: https://doi.org/10.1016/j.biortech.2009.11.093

CARVALHEIRO, F.; DUARTE, L. C.; GÍRIO, F. M. Hemicellulose biorefineries: a review on biomass pretreatments, Journal of Scientific & Industrial Research, v. 67, p. 849–864, 2008.

CHANG, V. S.; NAGWANI. M.; HOLTZAPPLE, M. T. Lime pretreatment of crop residues bagasse and wheat straw. Applied Biochemistry and Biotechnology, v. 74, p. 135-159, 1998. DOI: https://doi.org/10.1007/BF02825962

DÁVILA, I.; GULLÓN, B.; ALONSO, J. L.; LABIDI, J.; GULLÓN, P. Vine shoots as new source for the manufacture of prebiotic oligosaccharides. Carbohydrate Polymers, v. 207, p. 207:34-43, 2019. DOI: https://doi.org/10.1016/j.carbpol.2018.11.065

GALBE, M.; ZACCHI, G. Pretreatment: The key to efficient utilization of lignocellulosic materials. Biomass and Bioenergy, v. 46, p. 70-78, 2012. DOI: https://doi.org/10.1016/j.biombioe.2012.03.026

GARCIA, R. B.; GANTER, J. L. M. S.; CARVALHO, R. R. Solution properties of D-xylans from corn cobs. European Polymer Journal, v. 36, p. 783-787, 2000. DOI: https://doi.org/10.1016/S0014-3057(99)00133-0

GNANSOUNOU, E.; VASKAN, P.; PACHÓN, E. R. Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries. Bioresource Technology, v. 196, p. 364-375, 2015. DOI: https://doi.org/10.1016/j.biortech.2015.07.072

GODOI C.N.; FILHO, B. A. C.; WANDER, A. E.; LOPES, P. G.; SOUZA, G. V. Cooperation and Competitiveness in Brazilian Crafted beer Production: The case of gypsy breweries in Goiás State. International Journal of Advanced Engineering Research and Science, v. 6, p. 013-030, 2019. DOI: https://doi.org/10.22161/ijaers.6.6.2

GOMES, C. L.; GONÇALVES, E.; SUAREZ, C. A. G.; RODRIGUES, D. S.; MONTANO, I. C. Effect of reaction time and sodium hydroxide concentration on delignification and enzymatic hydrolysisof brewer’s spent grain from two brazilian brewers. Cellulose chemistry and technology, v. 55, p. 101-112, 2021. DOI: https://doi.org/10.35812/CelluloseChemTechnol.2021.55.10

GOUVEIA, E. R.; NASCIMENTO, R. T.; SOUTO-MAIOR, A. M.; ROCHA, G. J. M. Validation of methodology for the chemical characterization of sugar cane bagasse. Química Nova, v. 32, p. 1500-1503, 2009. DOI: https://doi.org/10.1590/S0100-40422009000600026

GUPTA, M.; ABU-GHANNAM, N.; GALLAGHAR, E. Barley for Brewing: characteristic changes during malting, brewing and applications of its by-products. Comprehensive Reviews in Food Science and Food Satefy, v. 9 p. 318-328, 2010. DOI: https://doi.org/10.1111/j.1541-4337.2010.00112.x

HENDRIKS, A. T. W. M.; ZEEMAN, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, v. 100, p. 10–18, 2009. DOI: https://doi.org/10.1016/j.biortech.2008.05.027

KAPARAJU, P.; SERRANO, M.; THOMSEN, A. B.; KONGJAN, P.; ANGELIDAKI, I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology, v. 100, p. 2562-2568, 2009. DOI: https://doi.org/10.1016/j.biortech.2008.11.011

KARAGÖZ, P.; ROCHA, I. V.; ÖZKAN, M.; ANGELIDAKI, I. Alkaline peroxide pretreatment of rapeseed straw for enhancing bioethanol production by same vessel saccharification and co-fermentation, Bioresource. Technology, v. 104, p. 349-357, 2012. DOI: https://doi.org/10.1016/j.biortech.2011.10.075

KUMAR, P.; BARRETT, D. M.; DELWICHE, M. J.; STROEVE, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, v. 48, p. 3713–3729, 2009. DOI: https://doi.org/10.1021/ie801542g

LECHON, Y.; CABAL, H.; SAEZ, R. Life cycle analysis of wheat and barley crops for bioethanol production in Spain. International Journal of Agricultural Resources Governance and Ecology, v. 4, p. 113-122, 2005. DOI: https://doi.org/10.1504/IJARGE.2005.007193

LYNCH, K. M.; STEFFEN, E. J.; ARENDT, E. K. Brewers' spent grain: a review with an emphasis on food and health. Journal The Institute of Brewing, v. 122, p. 553-568, 2016. DOI: https://doi.org/10.1002/jib.363

LUO, H.; ZHENG, P.; BILAL, M.; XIE, F.; ZENG, Q.; ZHU, C.; YANG, R.; WANG, Z. Efficient bio-butanol production from lignocellulosic waste by elucidating the mechanisms of Clostridium acetobutylicum response to phenolic inhibitors. Science of The Total Environment, v. 710, p. 1-10, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2019.136399

NANDA, S.; AZARGOHAR, R.; DALAI, A. K.; KOZINSKI, J. A. An assessment on the sustainability of lignocellulosic biomass for biorefining. Renewable and Sustainable Energy Reviews, v. 50, p. 925-941, 2015. DOI: https://doi.org/10.1016/j.rser.2015.05.058

NIEMI, P.; TAMMINEN, T.; SMEDS, A.; VILJANEN, K.; OHRA-AHO, T.; HOLOPAINEN-MANTILA, U.; FAULDS, C. B.; POUTANEN, K.; BUCHERT, J. Characterization of lipids and lignans in brewer’s spent grain and its enzymatically extracted fraction. Journal of Agricultural and Food Chemistry, v. 60, p. 9910−9917, 2012. DOI: https://doi.org/10.1021/jf302684x

OLIVEIRA, E. E.; SILVA, A. E.; JÚNIOR, T. N.; GOMES, M. C. S.; AGUIAR, L. M.; MARCELINO, H. R.; ARAÚJO, I. B.; BAYER, M. P.; RICARDO, N. M. P. S.; OLIVEIRA, A. G.; EGITO, E. S. T. Xylan from corn cobs, a promising polymer for drug delivery: Production and characterization. Bioresource Technology, v. 101, p. 5402-5406, 2010. DOI: https://doi.org/10.1016/j.biortech.2010.01.137

ORTIZ, P. S.; OLIVEIRA, S. JR. Compared exergy analysis of sugarcane bagasse sequential hydrolysis and fermentation and simultaneous saccharification and fermentation. International. Journal of Exergy, v. 19, p. 459-480, 2016. DOI: https://doi.org/10.1504/IJEX.2016.075880

PRATTO B, CHANDGUDE V, JÚNIOR RS, CRUZ AJG, BANKAR S. Biobutanol production from sugarcane straw: Defining optimal biomass loading for improved ABE fermentation, Ind. Crops Prod. 2020;148:1-9. DOI: https://doi.org/10.1016/j.indcrop.2020.112265

RAO LV, GOLI JK, GENTELA J, KOTI S. Bioconversion of lignocellulosic biomass to xylitol: An overview, Bioresour. Technol. 2016; 213:299-310. DOI: https://doi.org/10.1016/j.biortech.2016.04.092

ROBERTSON, J. A.; I’ANSON, K. J.A.; TREIMO, J.; FAULDS, C. B.; BROCKLEHURST, T. F.; EIJSINK, V. G. H.; WALDRON, K. W. Profiling brewers’ spent grain for composition and microbial ecology at the site of production, LWT−Food Sci. Technol. 2010;43(6):890−896. DOI: https://doi.org/10.1016/j.lwt.2010.01.019

Reinold MR. Practical brewery manual. Brazil: Aden Editora; 1997.

SÁNCHEZ, Ó. J; CARDONA, C. A. Trends in biotechnological production of fuel ethanol from different feedstocks, Bioresour. Technol. 2008;99(13):5270-5295. DOI: https://doi.org/10.1016/j.biortech.2007.11.013

SANTOS, M.; JIMENEZ, J.J.; BARTOLOME, B.; GOMEZ‐CORDOVÉS, C.; DEL‐NOZAL, M. J; Variability of brewers’ spent grain within a brewery, Food Chem. 2003; 80(1):17– 21. DOI: https://doi.org/10.1016/S0308-8146(02)00229-7

SILVA, S. S.; CARVALHO, R. R.; FONSECA J. L. C.; GARCIA, R. B. Extraction and characterization of xylans form corcobs. Polímeros. 1998;8(2):25-33. DOI: https://doi.org/10.1590/S0104-14281998000200005

SOUZA, A. F.; SILVESTRE, A. J. D. Plastics from renewable sources as green and sustainable alternatives. Current Opinion in Green and Sustainable Chemistry, v. 33, p. 100557, 2022. DOI: https://doi.org/10.1016/j.cogsc.2021.100557

SLUITER, A.; RUIZ, R.; SCARLATA, C.; SLUITER, J.; TEMPLETON, D.; CROCKER, D. Determination of Structural Carbohydrates and Lignin in Biomass, Midwest Research Institute, Techinical Report NREL/TP-510-42618, Columbus, United States, 2008.

SLUITER, A.; RUIZ, R.; SCARLATA, C.; SLUITER, J.; TEMPLETON, D.; CROCKER, D. Determination of Extractives in Biomass, Midwest Research Institute, Technical Report NREL/TP-510-42619, Columbus, United States, 2008.

SUN, Y.; CHENG, J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, v. 83, p. 1-11, 2002. DOI: https://doi.org/10.1016/S0960-8524(01)00212-7

YANG, S.; ZHANG, Y.; YUE, W.; WANG, W.; WANG, Y. Y.; YUAN, T. Q.; SUN, R. C. Valorization of lignin and cellulose in acid-steam-exploded corn stover by a moderate alkaline ethanol post-treatment based on an integrated biorefinery concept. Biotechnology for Biofuels and Bioproducts, v. 9, p. 1-14, 2016. DOI: https://doi.org/10.1186/s13068-016-0656-1

SUN, S.; SUN, S.; CAO, X.; SUN, R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology, v. 199, p. 49-58, 2016. DOI: https://doi.org/10.1016/j.biortech.2015.08.061

VERNÈS, L.; LI, Y.; CHEMAT, F.; ABERT-VIAN, M. Biorefinery concept as a key for sustainable future to green chemistry the case of microalgae. In: Li, Y.; Chemat, F. Plant Based “Green chemistry 2.0”. Eds. Singapure: Springer; 2019. p. 15-50. DOI: https://doi.org/10.1007/978-981-13-3810-6_2

THE GUARDIAN (UK). Water shortages could affect 5bn people by 2050. Londres, 2018. Disponível em: < https://www.theguardian.com/environment/2018/mar/19/water-shortages-could-affect-5bn-people-by-2050-un-report-warns/>. Acesso em: 30 out. 2023.

ZHANG, X.; TU, M.; PAICE, M. G. Routes to Potential Bioproducts from Lignocellulosic Biomass Lignin and Hemicelluloses, Bioenergy Research, v. 4, p. 246–257, 2011. DOI: https://doi.org/10.1007/s12155-011-9147-1

Published

2023-12-07

How to Cite

LOBO GOMES, Carla; BÁRBARA DE ALMEIDA, Jozianny; DE SOUZA RODRIGUES, Dasciana; GALEANO SUAREZ, Carlos Alberto; CAVALCANTI MONTANO, Inti Doraci. Mass balance and watmmmaer demand in the process of alkaline pretreatment of the main brewery residue. Cadernos UniFOA, Volta Redonda, v. 18, n. 53, p. 1–13, 2023. DOI: 10.47385/cadunifoa.v18.n53.4722. Disponível em: https://revistas.unifoa.edu.br/cadernos/article/view/4722. Acesso em: 24 nov. 2024.

Issue

Section

Tecnologia e Engenharias

Similar Articles

<< < 1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)