Balanço de massa e demanda hídrica no processo de pré-tratamento alcalino do principal resíduo cervejeiro

Autores

  • Carla Lobo Gomes Mestre em Engenharia Química Universidade Federal de Goiás, UFG, Brasil
  • Jozianny Bárbara de Almeida Mestre em Engenharia Química Universidade Federal de Goiás, UFG, Brasil
  • Dasciana de Souza Rodrigues Doutora em Engenharia Química. Embrapa Agroenergia
  • Carlos Alberto Galeano Suarez UNIVERSIDADE FEDERAL DE GOIÁS
  • Inti Doraci Cavalcanti Montano Doutor em Engenharia Química. Universidade Federal de Goiás, UFG, Brasil

DOI:

https://doi.org/10.47385/cadunifoa.v18.n53.4722

Palavras-chave:

Material lignocelulósico, Caracterização, Licor negro, Processos biotecnológicos, Bagaço de malte

Resumo

O pré-tratamento alcalino é um dos processos mais eficazes na remoção de lignina para diferentes tipos de materiais lignocelulósicos. Porém, a geração de grande quantidade de licor negro com elevado excesso de íons hidroxila (OH-), além dos efluentes gerados nas etapas de lavagem da biomassa, são alguns dos principais problemas da utilização desse tipo de pré-tratamento. Este trabalho tem como objetivo mostrar, através de um estudo de caso, o consumo de água necessário para a realização deste tipo de pré-tratamento. O resíduo de cerveja foi utilizado como material lignocelulósico para realizar o pré-tratamento alcalino com NaOH 4% e quantificar a água utilizada no processo. Um balanço de massa global durante o processo de deslignificação BSG permitiu identificar um percentual de recuperação global de 87,92% de celulose, 84,56% de hemicelulose e 87,63% de lignina do material total alimentado no processo de deslignificação. Para quantificar os principais componentes presentes no resíduo estudado, foi necessário caracterizar a água de lavagem dos sólidos obtidos no pré-tratamento. Ao final do processo, foram perdidos aproximadamente 0,50 g de celulose, 0,71 g de hemicelulose e 0,97 g de lignina em relação aos gramas alimentados, inicialmente no processo de deslignificação. A demanda de água durante o processo foi de 131,2 mL por g de material seco.

Downloads

Não há dados estatísticos.

Referências

ALIYU, S.; BALA, M. Brewer’s spent grain: a review of its potentials and applications. African Journal of Biotechnology, v. 10, p. 324−331, 2011. DOI: https://doi.org/10.5897/AJB11.2761

ALVIRA, P.; TOMÁS-PEJÓ, E.; BALLESTEROS, M.; NEGRO, M. J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, v. 101, p. 4851–4861, 2010. DOI: https://doi.org/10.1016/j.biortech.2009.11.093

CARVALHEIRO, F.; DUARTE, L. C.; GÍRIO, F. M. Hemicellulose biorefineries: a review on biomass pretreatments, Journal of Scientific & Industrial Research, v. 67, p. 849–864, 2008.

CHANG, V. S.; NAGWANI. M.; HOLTZAPPLE, M. T. Lime pretreatment of crop residues bagasse and wheat straw. Applied Biochemistry and Biotechnology, v. 74, p. 135-159, 1998. DOI: https://doi.org/10.1007/BF02825962

DÁVILA, I.; GULLÓN, B.; ALONSO, J. L.; LABIDI, J.; GULLÓN, P. Vine shoots as new source for the manufacture of prebiotic oligosaccharides. Carbohydrate Polymers, v. 207, p. 207:34-43, 2019. DOI: https://doi.org/10.1016/j.carbpol.2018.11.065

GALBE, M.; ZACCHI, G. Pretreatment: The key to efficient utilization of lignocellulosic materials. Biomass and Bioenergy, v. 46, p. 70-78, 2012. DOI: https://doi.org/10.1016/j.biombioe.2012.03.026

GARCIA, R. B.; GANTER, J. L. M. S.; CARVALHO, R. R. Solution properties of D-xylans from corn cobs. European Polymer Journal, v. 36, p. 783-787, 2000. DOI: https://doi.org/10.1016/S0014-3057(99)00133-0

GNANSOUNOU, E.; VASKAN, P.; PACHÓN, E. R. Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries. Bioresource Technology, v. 196, p. 364-375, 2015. DOI: https://doi.org/10.1016/j.biortech.2015.07.072

GODOI C.N.; FILHO, B. A. C.; WANDER, A. E.; LOPES, P. G.; SOUZA, G. V. Cooperation and Competitiveness in Brazilian Crafted beer Production: The case of gypsy breweries in Goiás State. International Journal of Advanced Engineering Research and Science, v. 6, p. 013-030, 2019. DOI: https://doi.org/10.22161/ijaers.6.6.2

GOMES, C. L.; GONÇALVES, E.; SUAREZ, C. A. G.; RODRIGUES, D. S.; MONTANO, I. C. Effect of reaction time and sodium hydroxide concentration on delignification and enzymatic hydrolysisof brewer’s spent grain from two brazilian brewers. Cellulose chemistry and technology, v. 55, p. 101-112, 2021. DOI: https://doi.org/10.35812/CelluloseChemTechnol.2021.55.10

GOUVEIA, E. R.; NASCIMENTO, R. T.; SOUTO-MAIOR, A. M.; ROCHA, G. J. M. Validation of methodology for the chemical characterization of sugar cane bagasse. Química Nova, v. 32, p. 1500-1503, 2009. DOI: https://doi.org/10.1590/S0100-40422009000600026

GUPTA, M.; ABU-GHANNAM, N.; GALLAGHAR, E. Barley for Brewing: characteristic changes during malting, brewing and applications of its by-products. Comprehensive Reviews in Food Science and Food Satefy, v. 9 p. 318-328, 2010. DOI: https://doi.org/10.1111/j.1541-4337.2010.00112.x

HENDRIKS, A. T. W. M.; ZEEMAN, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, v. 100, p. 10–18, 2009. DOI: https://doi.org/10.1016/j.biortech.2008.05.027

KAPARAJU, P.; SERRANO, M.; THOMSEN, A. B.; KONGJAN, P.; ANGELIDAKI, I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology, v. 100, p. 2562-2568, 2009. DOI: https://doi.org/10.1016/j.biortech.2008.11.011

KARAGÖZ, P.; ROCHA, I. V.; ÖZKAN, M.; ANGELIDAKI, I. Alkaline peroxide pretreatment of rapeseed straw for enhancing bioethanol production by same vessel saccharification and co-fermentation, Bioresource. Technology, v. 104, p. 349-357, 2012. DOI: https://doi.org/10.1016/j.biortech.2011.10.075

KUMAR, P.; BARRETT, D. M.; DELWICHE, M. J.; STROEVE, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, v. 48, p. 3713–3729, 2009. DOI: https://doi.org/10.1021/ie801542g

LECHON, Y.; CABAL, H.; SAEZ, R. Life cycle analysis of wheat and barley crops for bioethanol production in Spain. International Journal of Agricultural Resources Governance and Ecology, v. 4, p. 113-122, 2005. DOI: https://doi.org/10.1504/IJARGE.2005.007193

LYNCH, K. M.; STEFFEN, E. J.; ARENDT, E. K. Brewers' spent grain: a review with an emphasis on food and health. Journal The Institute of Brewing, v. 122, p. 553-568, 2016. DOI: https://doi.org/10.1002/jib.363

LUO, H.; ZHENG, P.; BILAL, M.; XIE, F.; ZENG, Q.; ZHU, C.; YANG, R.; WANG, Z. Efficient bio-butanol production from lignocellulosic waste by elucidating the mechanisms of Clostridium acetobutylicum response to phenolic inhibitors. Science of The Total Environment, v. 710, p. 1-10, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2019.136399

NANDA, S.; AZARGOHAR, R.; DALAI, A. K.; KOZINSKI, J. A. An assessment on the sustainability of lignocellulosic biomass for biorefining. Renewable and Sustainable Energy Reviews, v. 50, p. 925-941, 2015. DOI: https://doi.org/10.1016/j.rser.2015.05.058

NIEMI, P.; TAMMINEN, T.; SMEDS, A.; VILJANEN, K.; OHRA-AHO, T.; HOLOPAINEN-MANTILA, U.; FAULDS, C. B.; POUTANEN, K.; BUCHERT, J. Characterization of lipids and lignans in brewer’s spent grain and its enzymatically extracted fraction. Journal of Agricultural and Food Chemistry, v. 60, p. 9910−9917, 2012. DOI: https://doi.org/10.1021/jf302684x

OLIVEIRA, E. E.; SILVA, A. E.; JÚNIOR, T. N.; GOMES, M. C. S.; AGUIAR, L. M.; MARCELINO, H. R.; ARAÚJO, I. B.; BAYER, M. P.; RICARDO, N. M. P. S.; OLIVEIRA, A. G.; EGITO, E. S. T. Xylan from corn cobs, a promising polymer for drug delivery: Production and characterization. Bioresource Technology, v. 101, p. 5402-5406, 2010. DOI: https://doi.org/10.1016/j.biortech.2010.01.137

ORTIZ, P. S.; OLIVEIRA, S. JR. Compared exergy analysis of sugarcane bagasse sequential hydrolysis and fermentation and simultaneous saccharification and fermentation. International. Journal of Exergy, v. 19, p. 459-480, 2016. DOI: https://doi.org/10.1504/IJEX.2016.075880

PRATTO B, CHANDGUDE V, JÚNIOR RS, CRUZ AJG, BANKAR S. Biobutanol production from sugarcane straw: Defining optimal biomass loading for improved ABE fermentation, Ind. Crops Prod. 2020;148:1-9. DOI: https://doi.org/10.1016/j.indcrop.2020.112265

RAO LV, GOLI JK, GENTELA J, KOTI S. Bioconversion of lignocellulosic biomass to xylitol: An overview, Bioresour. Technol. 2016; 213:299-310. DOI: https://doi.org/10.1016/j.biortech.2016.04.092

ROBERTSON, J. A.; I’ANSON, K. J.A.; TREIMO, J.; FAULDS, C. B.; BROCKLEHURST, T. F.; EIJSINK, V. G. H.; WALDRON, K. W. Profiling brewers’ spent grain for composition and microbial ecology at the site of production, LWT−Food Sci. Technol. 2010;43(6):890−896. DOI: https://doi.org/10.1016/j.lwt.2010.01.019

Reinold MR. Practical brewery manual. Brazil: Aden Editora; 1997.

SÁNCHEZ, Ó. J; CARDONA, C. A. Trends in biotechnological production of fuel ethanol from different feedstocks, Bioresour. Technol. 2008;99(13):5270-5295. DOI: https://doi.org/10.1016/j.biortech.2007.11.013

SANTOS, M.; JIMENEZ, J.J.; BARTOLOME, B.; GOMEZ‐CORDOVÉS, C.; DEL‐NOZAL, M. J; Variability of brewers’ spent grain within a brewery, Food Chem. 2003; 80(1):17– 21. DOI: https://doi.org/10.1016/S0308-8146(02)00229-7

SILVA, S. S.; CARVALHO, R. R.; FONSECA J. L. C.; GARCIA, R. B. Extraction and characterization of xylans form corcobs. Polímeros. 1998;8(2):25-33. DOI: https://doi.org/10.1590/S0104-14281998000200005

SOUZA, A. F.; SILVESTRE, A. J. D. Plastics from renewable sources as green and sustainable alternatives. Current Opinion in Green and Sustainable Chemistry, v. 33, p. 100557, 2022. DOI: https://doi.org/10.1016/j.cogsc.2021.100557

SLUITER, A.; RUIZ, R.; SCARLATA, C.; SLUITER, J.; TEMPLETON, D.; CROCKER, D. Determination of Structural Carbohydrates and Lignin in Biomass, Midwest Research Institute, Techinical Report NREL/TP-510-42618, Columbus, United States, 2008.

SLUITER, A.; RUIZ, R.; SCARLATA, C.; SLUITER, J.; TEMPLETON, D.; CROCKER, D. Determination of Extractives in Biomass, Midwest Research Institute, Technical Report NREL/TP-510-42619, Columbus, United States, 2008.

SUN, Y.; CHENG, J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, v. 83, p. 1-11, 2002. DOI: https://doi.org/10.1016/S0960-8524(01)00212-7

YANG, S.; ZHANG, Y.; YUE, W.; WANG, W.; WANG, Y. Y.; YUAN, T. Q.; SUN, R. C. Valorization of lignin and cellulose in acid-steam-exploded corn stover by a moderate alkaline ethanol post-treatment based on an integrated biorefinery concept. Biotechnology for Biofuels and Bioproducts, v. 9, p. 1-14, 2016. DOI: https://doi.org/10.1186/s13068-016-0656-1

SUN, S.; SUN, S.; CAO, X.; SUN, R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology, v. 199, p. 49-58, 2016. DOI: https://doi.org/10.1016/j.biortech.2015.08.061

VERNÈS, L.; LI, Y.; CHEMAT, F.; ABERT-VIAN, M. Biorefinery concept as a key for sustainable future to green chemistry the case of microalgae. In: Li, Y.; Chemat, F. Plant Based “Green chemistry 2.0”. Eds. Singapure: Springer; 2019. p. 15-50. DOI: https://doi.org/10.1007/978-981-13-3810-6_2

THE GUARDIAN (UK). Water shortages could affect 5bn people by 2050. Londres, 2018. Disponível em: < https://www.theguardian.com/environment/2018/mar/19/water-shortages-could-affect-5bn-people-by-2050-un-report-warns/>. Acesso em: 30 out. 2023.

ZHANG, X.; TU, M.; PAICE, M. G. Routes to Potential Bioproducts from Lignocellulosic Biomass Lignin and Hemicelluloses, Bioenergy Research, v. 4, p. 246–257, 2011. DOI: https://doi.org/10.1007/s12155-011-9147-1

Downloads

Publicado

07-12-2023

Como Citar

LOBO GOMES, Carla; BÁRBARA DE ALMEIDA, Jozianny; DE SOUZA RODRIGUES, Dasciana; GALEANO SUAREZ, Carlos Alberto; CAVALCANTI MONTANO, Inti Doraci. Balanço de massa e demanda hídrica no processo de pré-tratamento alcalino do principal resíduo cervejeiro. Cadernos UniFOA, Volta Redonda, v. 18, n. 53, p. 1–13, 2023. DOI: 10.47385/cadunifoa.v18.n53.4722. Disponível em: https://revistas.unifoa.edu.br/cadernos/article/view/4722. Acesso em: 24 nov. 2024.

Edição

Seção

Tecnologia e Engenharias

Artigos Semelhantes

<< < 1 2 3 4 5 6 7 8 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)