The influence of aging treatment on the microstructural and mechanical behavior by ultra-micro hardness tester in Ni-rich NiTi alloy

Authors

  • Naiara Vieira Le Sénéchal Instituto Militar de Engenharia http://orcid.org/0000-0003-4992-5656
  • Rodolfo Teixeira Instituto Militar de Engenharia
  • Patrícia Freitas Rodrigues Faculdade de Ciência e Tecnologia da Universidade de Coimbra
  • Shimeni Baptista Ribeiro Centro Universitário de Volta Redonda
  • Andersan dos Santos Paula Instituto Militar de Engenharia

DOI:

https://doi.org/10.47385/cadunifoa.v16.n47.3810

Keywords:

Shape Memory alloys. NiTi. Thermomechanical Process. Synchrotron Radiation. Heat Treatments.

Abstract

The present study aims to assess the superelasticity behavior in Ni-rich NiTi alloy wire produced by rotary forging process. The thermomechanical process involved four steps of hot working at 800ºC, two steps of cold working with solution heat treatment at 800ºC between them, and subsequently a solution heat treatment (950ºC during 2 hours) followed by aging treatment at 350, 400 and 450 ºC during 30 minutes. X-ray diffraction (XRD) and instrumented ultra-micro hardness testers evaluated the present phase at each aged sample and were compared with their mechanical behavior. The results put in evidence the work-hardening effect on a forged condition associated with the final step of cold rotary forging. The solution treatment promotes stress relaxation and precipitate dissolution. The sample heat-treated shows the presence of the precipitated (Ni4Ti3) and R phase. The presence of these precipitates is beneficial because precipitation-hardening increases the yield strength of austenite, which in turn contributes to better functional stability.

Downloads

Download data is not yet available.

Author Biographies

Naiara Vieira Le Sénéchal, Instituto Militar de Engenharia

Departamento de Ciência dos Materiais - Área: Materiais Metálicos

Rodolfo Teixeira, Instituto Militar de Engenharia

Departamento de Ciência dos Materiais - Área: Materiais Metálicos

Patrícia Freitas Rodrigues, Faculdade de Ciência e Tecnologia da Universidade de Coimbra

CEMMPRE Departamento de Engenharia Mecânica

Andersan dos Santos Paula, Instituto Militar de Engenharia

Departamento de Ciência dos Materiais - Área: Materiais Metálicos

References

SUZUKI, Y. Fabrication of shape memory alloys. In: Otsuka K and CMW, editor. Shape Mem. Mater. 1st ed., New York: Cambridge University Press, p. 133–48, 1998.

OTSUKA, K.; REN, X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Ma-ter Sci, p.50:511–678, 2005. https://doi.org/DOI 10.1016/j.pmatsci.2004.10.001.

KOTHA, RS.; ALLA, RK.; SHAMMAS, M.; RAVI, RK. An Overview of Orthodontic Wires. Trends Biomater Artif Organs, p.28:32–6, 2014.

OTUBO, J.; RIGO, OD.; COELHO, AA.; NETO, CM.; MEI, PR. The influence of carbon and oxygen content on the martensitic transformation temperatures and enthalpies of NiTi shape memory alloy. Mater Sci Eng A, p. 481–482:639–42. 2008. https://doi.org/10.1016/j.msea.2007.02.137.

ZHOU, D.; GAO, Y.; LAI, M.; LI, H.; YUAN, B.; ZHU, M.; A review of shape memory alloy research, applications and opportunities. Mater Sci Eng A, p.56:1078–113, 2015. https://doi.org/10.1016/j.matdes.2013.11.084.

FREITAS RODRIGUES, P. Structural Evolution of Ni-Ti Alloy Wires Produced by Hot and Cold Rotary Forging. Dissertação para obtenção do Grau de Doutor em Ciência e Engenharia de Materiais. Universidade Nova de Lisboa, 2018.

SUN, B.; LIN, J.; FU, MW. Dependence of processing window and microstructural evolu-tion on initial material state in direct electric resistance heat treatment of NiTi alloy. Mater Des, p.139:549–64, 2018. https://doi.org/10.1016/J.MATDES.2017.11.044.

KHALIL-ALLAFI, J.; EGEELER, G.; DLOUHY, A.; SCHMAHL, WW.; SOMSEN, C. On the influence of heterogeneous precipitation on martensitic transformations in a Ni-rich NiTi shape memory alloy. Mater Sci Eng A, p.378:148–51, 2004.https://doi.org/10.1016/j.msea.2003.10.335.

ŚWIEC, P.; ZUBKO, M.; LEKSTON, Z.; STRÓŻ, D. Structure and Properties of NiTi Shape Memory Alloy after Cold Rolling in Martensitic State. Acta Phys Pol A, p. 130:1081–4, 2016. https://doi.org/10.12693/APhysPolA.130.1081.

NEMAT-NASSER, S.; GUO, WG. Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures. Mech Mater, p.38:463–74, 2006. https://doi.org/10.1016/j.mechmat.2005.07.004.

YEUNG, KWK.; CHEUNG, KMC.; LU, WW.; CHUNG, CY. Optimization of thermal treatment parameters to alter austenitic phase transition temperature of NiTi alloy for medical implant. Mater Sci Eng A, p.383:213–8, 2004. https://doi.org/10.1016/j.msea.2004.05.063.

HELLER, L.; SEINER, H.; ŠITTNER, P.; SEDLÁK, P.; TYC, O.; KADEŘÁVEK, L. On the plastic defor-mation accompanying cyclic martensitic transformation in thermomechanically loaded NiTi. Int J Plast, p.111:53–71, 2018. https://doi.org/10.1016/j.ijplas.2018.07.007.

ALLAFI, JK.; REN, X.; EGGELER, G. The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys. Acta Mater, p. 50:793–803, 2002. https://doi.org/10.1016/S1359-6454(01)00385-8.

SCHMAHL, WW.; KHALIL-ALLAFI, J.; HASSE, B.; WAGNER, M.; HECKMANN, A.; SOMSEN, C. Investigation of the phase evolution in a superelastic NiTi shape memory alloy (50.7 at.%Ni) under extensional load with synchrotron radiation. Mater Sci Eng A, p.378:81–5, 2004. https://doi.org/10.1016/j.msea.2003.11.081.

FAN, QC.; ZHANG, YH.; WANG, YY.; SUN, MY.; MENG, YT.; HUANG, SK.; et al. Influences of transformation behavior and precipitates on the deformation behavior of Ni-rich NiTi alloys. Mater Sci Eng A, 2017. https://doi.org/10.1016/j.msea.2017.05.107.

GALL, K.; JUNTUNEN, K.; MAIER, HJ.; SEHITOGLU, H.; CHUMLYAKOV, YI. Instrumented micro-indentation of NiTi shape-memory alloys. Acta Mater, p.49:3205–17, 2001. https://doi.org/10.1016/S1359-6454(01)00223-3.

MORGAN, N.; WICK, A.; DICELLO, J.; GRAHAM, R. Carbon and Oxygen Levels in Nitinol Alloys and the Implications for Medical Device Manufacture and Durability. Int. Conf. Shape Mem. Superelastic Technol., vol. 683, California: ASM International; p.821–8, 2008. https://doi.org/10.1361/cp2006smst821.

SAGHAIAN, SM.; KARACA, HE.; TOBE, H.; PONS, J.; SANTAMARTA, R.; CHUMLYAKOV, YI.; et al. Effects of Ni content on the shape memory properties and microstructure of Ni-rich NiTi-20Hf alloys. Smart Mater Struct, p. 25:095029, 2016. https://doi.org/10.1088/0964-1726/25/9/095029.

GALL, K.; SEHITOGLU, H.; CHUMLYAKOV, YI.; KIREEVA, IV.; MAIER, HJ. The Influence of Aging on Critical Transformation Stress Levels and Martensite Start Temperatures in NiTi: Part II—Discussion of Experimental Results. J Eng Mater Technol, p.121:28–37, 1999. https://doi.org/10.1115/1.2815995.

TEIXEIRA, RS.; PAULA, AS.; SANTOS, FS.; RODRIGUES, PF.; BRAZ FERNANDES, FM. Critical Analyses on the Instrumented Ultramicrohardness Results on Aging NiTi Alloy in Distinct Phase Fields, p.109–14, 2018. https://doi.org/10.1007/978-3-319-76968-4_17.

RODRIGUES, PF.; FERNANDES, FMB.; TEIXEIRA, EM.; BAPTISTA, S.; PAULA, AS.; OLIVEIRA, JP. Influence of ageing treatment on the thermophysical characteristics and mechanical properties of forging wire Ni-rich NiTi alloy for superelastic applications. Ciência Tecnol Dos Mater , p.29:e23–6, 2017. https://doi.org/10.1016/J.CTMAT.2016.07.013.

PELTON, AR.; DICELLO, J.; MIYAZAKI, S. Optimisation of processing and properties of medi-cal grade Nitinol wire. Minim Invasive Ther Allied Technol, p.9:107–18, 2000. https://doi.org/10.3109/13645700009063057.

BATAILLARD, L.; BIDAUX, JE.; GOTTHARD, R. Interaction between microstructure and multiple-step transformation in binary NiTi alloys using in-situ transmission electron microscopy observations. Philos Mag A Phys Condens Matter, Struct Defects Mech Prop, p.78:327–44, 1998. https://doi.org/10.1080/01418619808241907.

WAGNER, MFX.; DEY, SR.; GUGEL, H.; FRENZEL, J.; SOMSEN, C.; EGGELER, G. Effect of low-temperature precipitation on the transformation characteristics of Ni-rich NiTi shape memory alloys during thermal cycling. Intermetallics, p.18:1172–9, 2010. https://doi.org/10.1016/j.intermet.2010.02.048.

Dynamic Ultra-micro Hardness Tester Instruction Manual, 2009.

Downloads

Published

2021-11-26

How to Cite

LE SÉNÉCHAL, Naiara Vieira; TEIXEIRA, Rodolfo; RODRIGUES, Patrícia Freitas; RIBEIRO, Shimeni Baptista; PAULA, Andersan dos Santos. The influence of aging treatment on the microstructural and mechanical behavior by ultra-micro hardness tester in Ni-rich NiTi alloy. Cadernos UniFOA, Volta Redonda, v. 16, n. 47, 2021. DOI: 10.47385/cadunifoa.v16.n47.3810. Disponível em: https://revistas.unifoa.edu.br/cadernos/article/view/3810. Acesso em: 25 nov. 2024.

Issue

Section

Tecnologia e Engenharias

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)