Use of artificial intelligence for the development of a fault prediction algorithm for three-phase induction motors

a systematic literature review

Authors

DOI:

https://doi.org/10.47385/cadunifoa.v20.n55.5536

Keywords:

Failure detection, Three-Phase Induction Motor, Artificial Intelligence, Artificial Neural Networks

Abstract

Reducing operational costs and increasing efficiency are crucial to ensuring competitiveness in the automotive industry. Rigorous control of three-phase induction motors is essential to maintaining uninterrupted production and minimizing downtime caused by failures. In this context, Artificial Intelligence stands out as a powerful tool for developing fault prediction algorithms for three-phase induction motors. To understand current trends in this field, this article proposes a systematic literature review, aiming to obtain a comprehensive overview of the existing research and identify knowledge gaps in this area. The results highlighted eight studies that emphasize the use of Artificial Neural Networks for fault detection in three-phase induction motors.

Downloads

Download data is not yet available.

Author Biographies

Lizandra dos Santos Alves, Centro Universi´tário de Volta Redonda

Estudante de Engenharia Elétrica

Caroline dos Reis Rossi Fernandes, Centro Universitário de Volta Redonda

Estudante de Engenharia Elétrica

Julia Gabriel Vicente, Centro Universitário de Volta Redonda

Estudante de Engenharia Elétrica

Italo Pinto Rodrigues, Centro Universitário de Volta Redonda

Doutor em Engenharia e Tecnologia Espaciais pelo INPE, com ênfase em otimização multiobjetivo e multidisciplinar e inteligência artificial aplicada a simuladores de satélite. Durante o mestrado, também no INPE, concentrou-se na modelagem, simulação e verificação de sistemas espaciais. Graduado em Engenharia Elétrica pelo UniFOA, possui experiência prática adquirida durante estágio na Companhia Siderúrgica Nacional, focando em manutenção elétrica e automação. Atuou como bolsista PCI no desenvolvimento de simuladores para os satélites CBERS-4 e Amazônia 1, liderando a especificação de modelos elétrico-comportamentais e sua implementação em XML. Trabalhou como pesquisador no Instituto de Tecnologia Edson Mororó Moura, explorando acumuladores de energia avançados. Desde 2022, integra o corpo docente dos cursos de Engenharia do UniFOA, contribuindo com sua ampla experiência acadêmica e profissional.

Aloano Regio de Almeida Pereira, Centro Universitário de Volta Redonda

Engenheiro Eletricista

References

AWDE, Shreyas; PATIL, Shruti; KUMAR, Satish; KAMAT, Pooja; KOTECHA, Ketan; ABRAHAM, Ajith. Multi-fault diagnosis of Industrial Rotating Machines using Data-driven approach: A review of two decades of research. Engineering Applications of Artificial Intelligence, v. 123, p. 106139, 2023. DOI: https://doi.org/10.1016/j.engappai.2023.106139

BRERETON, P; KITCHENHAM, B.; BUDGEN, D.; TURNER, M.; KHALIL, M. Lessons from applying the systematic literature review process within the software engineering domain. Journal of Systems and Software, [S. l.], v. 80, n. 4, p. 571–583, 2007. DOI: 10.1016/j.jss.2006.07.009. Disponível em: DOI: https://doi.org/10.1016/j.jss.2006.07.009

https://linkinghub.elsevier.com/retrieve/pii/S016412120600197X.

Garcia-Calva, T.; Morinigo Sotelo, D.; Fernandez-Cavero, V.; Romero-Troncoso, R. Early Detection of Faults in Induction Motors—A Review. Energies 2022, 15, 7855. https://doi.org/10.3390/en15217855. DOI: https://doi.org/10.3390/en15217855

FAULT DIAGNOSIS OF INDUSTRIAL ROTATING MACHINES USING DATA-DRIVEN APPROACH: A REVIEW OF TWO DECADES OF RESEARCH. 2022, 30, 14153. https://doi.org/10.48550/arXiv.2206.14153

Inyang, U.I.; Petrunin, I.; Jennions, I. Diagnosis of Multiple Faults in Rotating Machinery Using Ensemble Learning. Sensors 2023, 23, 1005. https://doi.org/10.3390/ s2302100. DOI: https://doi.org/10.3390/s23021005

KITCHENHAM, B.; CHARTERS, S. Guidelines for performing Systematic Literature Reviews in Software Engineering. Technical Report, EBSE-2007-01, Keele University and Durham University Joint Report, 2007.

Kumar, P.; Khalid, S.; Kim, H.S. Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications—A Review. Mathematics 2023, 11, 3008. https:// doi.org/10.3390/math11133008. DOI: https://doi.org/10.3390/math11133008

MUMALI, Fredrick. Artificial neural network-based decision support systems in manufacturing processes: A systematic literature review. Computers & Industrial Engineering, [S. l.], v. 165, p. 107964, 2022. DOI: 10.1016/j.cie.2022.107964. DOI: https://doi.org/10.1016/j.cie.2022.107964

Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0360835222000341.

PETERSEN, K.; FELDT, R.; KUZNIARZ, L.; MATTSSON, M. Systematic Mapping Studies in Software Engineering. In: Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering (EASE), 2008, Bari, Italy. p. 68-77. DOI: https://doi.org/10.14236/ewic/EASE2008.8

Published

2025-04-14

How to Cite

ALVES, Lizandra dos Santos; FERNANDES, Caroline dos Reis Rossi; VICENTE, Julia Gabriel; RODRIGUES, Italo Pinto; PEREIRA, Aloano Regio de Almeida. Use of artificial intelligence for the development of a fault prediction algorithm for three-phase induction motors: a systematic literature review. Cadernos UniFOA, Volta Redonda, v. 20, n. 55, p. 1–12, 2025. DOI: 10.47385/cadunifoa.v20.n55.5536. Disponível em: https://revistas.unifoa.edu.br/cadernos/article/view/5536. Acesso em: 18 apr. 2025.

Issue

Section

Tecnologia e Engenharias

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.